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Averaging of Nonlinearity Management with Dissipation

S. Beheshti, K. J. H. Law, P. G. Kevrekidis1 and Mason A. Porter2

1Department of Mathematics and Statistics, University of Massachusetts, Amherst MA 01003-4515
2Oxford Centre for Industrial and Applied Mathematics,

Mathematical Institute, University of Oxford, OX1 3LB, United Kingdom

Motivated by recent experiments in optics and atomic physics, we derive an averaged nonlinear
partial differential equation describing the dynamics of the complex field in a nonlinear Schrödinger
model in the presence of a periodic nonlinearity and a periodically-varying dissipation coefficient.
The incorporation of dissipation is motivated by experimental considerations. We test the numerical
behavior of the derived averaged equation by comparing it to the original nonautonomous model in
a prototypical case scenario and observe good agreement between the two.

I. INTRODUCTION

In the past few years, there has been an intense theo-
retical interest in the use of nonlinear Schrödinger (NLS)
equations to describe both the propagation of optical
beams in waveguides and fibers [1, 2] and the mean-field
evolution of Bose-Einstein condensates (BECs) [3, 4].
Within this framework of dispersive equations that sup-
port solitary nonlinear waves, one of the particular top-
ics of recent interest has been the effects of spatially
and/or temporally (i.e., in the evolution variable) depen-
dent nonlinearities. This subject, often called “nonlin-
earity management” [5] — by analogy with the topic of
“dispersion management” that has been developed, in
the context of optics, in far greater depth [6] — was orig-
inally proposed in the study of layered optical media [7].
However, it has also garnered considerable attention in
the study of Bose-Einstein condensation, where it was
reformulated as Feshbach resonance management [8].

Recent experimental work in optics has realized lay-
ered media through a concatenation of glass slides and
air gaps. This has allowed a more detailed examination
of topics such as the breathing of localized pulses [9] and
the modulational instability of extended ones [10, 11].
Moreover, in the context of Bose-Einstein condensates,
the inter-atomic interactions (which are the source of the
nonlinearity at the mean-field level) can be adjusted ex-
perimentally in a very broad range by employing either
magnetic [12, 13] or optical Feshbach resonances [14].
This has led to a significant number of both theoret-
ical and experimental studies, including the formation
(in the laboratory) of bright matter-wave solitons and
soliton trains for 7Li [15, 16] and 85Rb [17] atoms. On
the theoretical side, such a modulation of the interac-
tion scattering length (and hence of the nonlinearity co-
efficient) has been used, among other things, to stabi-
lize attractive higher-dimensional BECs against collapse
[18]. More recently, spatial variations of the nonlinear-
ity have also been considered. In particular, it has been
shown that such “collisionally inhomogeneous” conden-
sates lead to a variety of interesting features, including
adiabatic compression of matter-waves [19, 20], Bloch
oscillations of matter-wave solitons [19], atomic soliton
emission and atom lasers [21], enhancement of transmit-

tivity of matter-waves through barriers [22, 23], dynami-
cal trapping of matter-wave solitons [22], stable conden-
sates exhibiting both attractive and repulsive interatomic
interactions [24], the delocalization transition of matter
waves [25], and more. Numerous different types of spa-
tial variations of the nonlinearity have now been con-
sidered, including linear [19, 22], random [26], periodic
[25, 27, 28], and localized (step-like) [21, 29, 30] ones.
There have also been a number of detailed mathematical
studies [31, 32, 33] that address aspects such as the effect
of a “nonlinear lattice potential” (i.e., a spatially periodic
nonlinearity) on the stability/instability of solitary waves
and the interplay between drift and diffraction/blow-up
instabilities.

In the case of fast variations of the nonlinearity coeffi-
cient as a function of the evolution variable (time in BECs
and the propagation direction in optics), one successful
strategy that has been employed is to average the nonau-
tonomous, nonlinearity-managed dynamics to obtain an
(averaged) autonomous system [34, 35]. The stationary
states [36] and collapse properties [37] of the latter can be
analyzed in one- and in higher-dimensions, respectively.
However, the presence of dissipation is a particularly im-
portant feature that arises when periodically varying the
nonlinearity coefficients in both optics and BEC exper-
iments and which was not incorporated in these earlier
studies, to the best of our knowledge. In particular, in
the optical case of nonlinearity management there is a
periodic loss (of the order of a few percent of the inten-
sity of the optical beam) every time the beam crosses an
interface between the different media (such as glass and
air) [9, 10, 11]. In BECs, if the Feshbach resonance is
crossed, numerous atoms are lost, which results again in
dissipative dynamics [3, 4] (although it is important to
note that it is not always necessary to cross the actual
resonance to change the sign of the scattering length, as
vanishings of the scattering length as a function of the
external magnetic field can also occur away from the res-
onance [8, 18]).

Our goal in this Brief Report is to address the averag-
ing of nonlinearly-managed dynamics in the presence of
dissipation. The remainder of our presentation is orga-
nized as follows. We first present the general setting in
which both a periodic nonlinearity and a periodic dissi-
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pation are applied. We then use averaging techniques to
this nonautonomous setting and obtain an autonomous
partial differential equation (PDE) describing the aver-
aged dynamics. We subsequently test the resulting model
against numerical experiments of the original dynamical
equations, obtaining good agreement between the two.
Finally, we summarize our findings and present some sug-
gestions for possible future studies.

II. ANALYTICAL RESULTS

Motivated by the above physical settings, we consider
in our analysis a time-dependent nonlinearity and include
a time-dependent dissipation term. We thereby general-
ize the averaging technique of [34] and obtain a general
averaged PDE in arbitrary dimensions. As our derivation
hinges on the periodicity of the fast timescale, we require
that the length of the period is at least an order of mag-
nitude smaller than that of the slow scale over which we
monitor the dynamics.

The primary model used for the physical settings we
consider is an NLS equation of the form

iut + 1
2∆u+ γ0|u|

2u+ iζ0u+ 1
ǫ
γ

(

t
ǫ

)

|u|2u+ i
ǫ
ζ

(

t
ǫ

)

u = 0 ,
(1)

where x ∈ R
n, t ∈ R+, τ = t/ǫ and the quantities γ0,

ζ0 are parameters. The continuous functions γ(τ), ζ(τ)
satisfy

γ(τ + 1) = γ(τ),
∫ 1

0 γ(τ)dτ = 0 ,

ζ(τ + 1) = ζ(τ),
∫ 1

0
ζ(τ)dτ = 0 .

and represent the time-dependent part of the nonlinear-
ity and dissipation, respectively. The NLS equation de-
scribes the envelope of the electric field of light in the
context of optics, and it represents the mean-field wave-
function of the BEC in the context of atomic physics.
To better understand the behavior of solutions, we use a
multiple-scale expansion to derive an averaged equation
for (1) in arbitrary dimensions.

Following the notation in Ref. [34], let f−1 denote the
zero-mean antiderivative of f . It is given by

f−1(τ) =

∫ τ

0

f(τ ′)dτ ′ −

∫ 1

0

∫ τ

0

f(τ ′)dτ ′dτ . (2)

Define the transformation

u(x, t) = e−ζ
−1(τ)e(ij(τ)|v(x,t)|2)v(x, t) , (3)

where j(τ) =
(

γe−2ζ
−1(τ)

)

−1
. Using (2,3), equation (1)

can be expressed as

ivt − j(τ)|v|2t v = − 1
2△v − γ0e

−2ζ
−1(τ)|v|2v − iζ0v

− 1
2 ij(τ)

[

2
(

∇|v|2 · ∇v
)

+ v∆|v|2
]

+ 1
2j(τ)2v

(

∇|v|2 · ∇|v|2
)

, (4)

where |v|2t = ∂
∂t

(|v|2), ∆|v|2 stands for ∆(|v|2), and ∇|v|2

stands for ∇(|v|2).

We isolate |v|2t by considering the expression v(4)−v(4)
[i.e., Eq. (4) times the complex conjugate of v minus v
times the complex conjugate of Eq. (4)] to transform (1)
into the standard form

ivt = − 1
2∆v − γ0e

−2ζ
−1(τ)|v|2v − iζ0v − 2ζ0j(τ)|v|2v

− 1
2 ij(τ)

[

∆(|v|2v) − 2|v|2∆v + v2∆v
]

− 1
2j(τ)2

[

2|v|2∆|v|2 + ∇|v|2 · ∇|v|2
]

v . (5)

Using the multiple-scale expansion v(x, t) = w(x, t) +
ǫv1(x, t, τ) + O(ǫ2), we obtain from (5):

iwt = −iv1τ − 1
2∆w − γ0e

−2ζ
−1(τ)|w|2w

−iζ0w − 2ζ0j(τ)|w|2w

− 1
2 ij(τ)

[

∆(|w|2w) − 2|w|2∆w + w2∆w
]

− 1
2j(τ)2

[

2|w|2∆|w|2 + ∇|w|2 · ∇|w|2
]

w . (6)

Integrating (6) yields an expression that one can reintro-
duce into the equation to solve for v1τ . Consequently,
the averaged equation for (1) takes the form

iwt = − 1
2∆w − γ0ρ|w|2w − iζ0w

−σ2

2 w
[

∇|w|2 · ∇|w|2 + 2|w|2∆|w|2
]

, (7)

with σ2 =
∫ 1

0 j(τ)2dτ and ρ =
∫ 1

0 e−2ζ
−1(τ)dτ . Observe

that the formal expansion v = w+ ǫv1 yields an equation
which no longer depends upon the fast time-scale τ (that
is, an autonomous PDE). This approach also enables us
to obtain the governing dynamics for the leading-order
correction to the averaged behavior:

v1 = − 1
2

[

∆(|w|2w) − 2|w|2∆w + w2∆w
]

j−1(τ)

+ 1
2 iw

[

∇|w|2 · ∇|w|2 + 2|w|2∆|w|2
] (

j(τ)2 − σ2
)

−1

+iγ0|w|2w
(

e−2ζ
−1(τ)

)

−1
+ 2iζ0j−1(τ)|w|2w , (8)

which can be compared with Eq. (2.13) in Ref. [34].

III. NUMERICAL CORROBORATION

In order to test the validity of Eq. (7) for the averaged
dynamics, we implement a prototypical two-dimensional
realization of the above setting with radial symmetry (fol-
lowing the lines of [18]). In particular, we consider the
case of the two-dimensional unstable (against collapse)
NLS soliton — the so-called Townes soliton [38]) — with
focusing nonlinearity. It has been shown in the context
of BECs that such a solution can be stabilized using a
rapidly oscillating nonlinearity coefficient [18]. The re-
sulting dynamics contain a fast time-scale periodicity as-
sociated with the nonlinearity management, so that this
setting provides an ideal testbed for examining the accu-
racy of Eq. (7).
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FIG. 1: (Color online) Averaged dynamics of Eq. (7) versus
full dynamics of Eq. (9): the maximum of the intensity of
(9) is shown in gray (green in the online version). We use
the parameters a0 = 2π, a1 = −8π, ω = 30, b = b0 × 10−4,
and b0 = 2. Overlayed (in black) is the same diagnostic for
the averaged equation. It is clear that the averaged dynamical
behavior is captured accurately over 250 time units. The inset
shows a magnification of the small time-scale oscillations that
are responsible for the stabilization and the overlayed average
curve over the first 12 time units.

As in Refs. [18], we consider the setting

[

i∂t +
1

2
∆ + γ(t)|u|2 + iζ(t)

]

u = 0 , (9)

where the time-dependent nonlinearity γ(t) and the time-
dependent dissipation ζ(t) (the latter was absent in [18])
are given by

γ(t) = a0 + a1 sin(ωt)

ζ(t) = b[1 − cos(ωt)] . (10)

Let ǫ = 2π/ω, f0 = 1
ǫ

∫ ǫ

0
f(t)dt, and f̃(τ) = ǫ[f(τ) −

f0], where τ is defined below Eq. (1), for any function f .
Applying this operation to the functions γ(ǫτ) and ζ(ǫτ)
brings Eq. (9) in the form of Eq. (1) (upon subsequently
dropping the tildes) and allows us to apply Eq. (7) to this
setting. ζ(t) > ζcrit ≈ 5.8 (in the regime of instability)
[18, 39] for more than half the period. Figure 1 shows
the maximum intensity |u|2 of the field in the full equa-
tion (9) in gray (green in the color online version) and
the intensity |w|2 of the averaged equation (7) in black.
It clearly illustrates the strong correlation between the
latter and the average (over a fast period) of the former.
In Fig. 2, we illustrate this agreement over the initial few
periods of the macroscopic dynamics of the equation for
several different values of b = b0×10−4, with b0 = 1, 2, 3.
It is clear that as the magnitude of the dissipation is in-
creased, the amplitude of the nonlinear solution sustains
a stronger decrease and a weaker oscillatory behavior.
Nevertheless, the agreement between the average of the
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FIG. 2: (Color online) Three comparisons like that of Fig. 1
over the first 60 time units with b0 = 1, 2, and 3 for the top,
middle, and bottom curves, respectively. All other parame-
ters are the same as in Fig. 1. In particular, observe in the top
comparison that the averaged equation (7) begins diverging
from the long time-scale dynamics (in the case of the smaller-
magnitude dissipation term). The inset shows the absolute
error between the solution of the full equation, ufull, and that
of the averaged, uave, Error= |max(|uave|

2)−max(|ufull|
2)|(t).

One can see more clearly here that after t = 30 the error in
the case with the smallest dissipation coefficient grows con-
siderably.

full dynamics (over the fast scale) and the proposed aver-
aged dynamics remains essentially satisfactory in all the
studied cases.

IV. CONCLUSIONS

In conclusion, we have considered the physically real-
istic case of periodic dissipative dynamics in the setting
of periodically-managed nonlinearity. We have argued
on physical grounds that the inclusion of dissipation is
relevant for both optically layered media and for Bose-
Einstein condensates crossing Feshbach resonances. We
have systematically generalized earlier works by obtain-
ing a PDE that incorporates both the average and the
fluctuating parts of the dissipation. We showed that
this generalized PDE model, which is valid in both one-
dimensional and multi-dimensional settings, is in good
agreement with the average of the original dynamical
equation for different dissipation characteristics within
a prototypical two-dimensional nonlinearity management
setting proposed earlier.

As discussed in the introduction, in addition to the
case of temporally-dependent nonlinearity explicitly con-
sidered here, there has been a lot of recent attention on
spatially-dependent microstructures in the nonlinearity.
It would thus be interesting to extend our considerations
to the case of spatially-dependent nonlinearity prefac-
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tors and to derive the corresponding “averaged” dynam-
ics (provided that the nonlinearity prefactor varies over
a fast spatial scale). Extending such averaging consid-
erations to spatially and spatio-temporally varying non-
linearities is an interesting endeavor under current con-
sideration, and relevant results will be reported in future

studies.
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Phys. Rev. A 74, 013619 (2006).

[22] G. Theocharis, P. Schmelcher, P. G. Kevrekidis and D. J.
Frantzeskakis, Phys. Rev. A 74, 053614 (2006).

[23] J. Garnier and F. Kh. Abdullaev, Phys. Rev. A 74,
013604 (2006).

[24] G. Dong, B. Hu, and W. Lu, Phys. Rev. A 74, 063601
(2006).

[25] Yu. V. Bludov, V. A. Brazhnyi, and V. V. Konotop, Phys.
Rev. A 76, 023603 (2007).

[26] F. Kh. Abdullaev and J. Garnier, Phys. Rev. A 72,
061605(R) (2005).

[27] H. Sakaguchi and B. A. Malomed, Phys. Rev. E 72,
046610 (2005); M. A. Porter, P. G. Kevrekidis, B. A.
Malomed, and D. J. Frantzeskakis, Physica D 229, 104
(2007); F. Kh. Abdullaev, A. Abdumalikov and R. Gal-
imzyanov, Phys. Lett. A 367, 149 (2007).

[28] Y.V. Bludov and V. V. Konotop, Phys. Rev. A 74,
043616 (2006).

[29] M. T. Primatarowa, K. T. Stoychev and R. S. Kam-
burova, Phys. Rev. E 72, 036608 (2005).
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and P. J. Torres, Phys. Rev. Lett. 98, 064102 (2007).
[34] V. Zharnitsky, D. Pelinovky, Chaos 15, 037105 (2005).
[35] D. E. Pelinovsky, P. G. Kevrekidis, and D. J.

Frantzeskakis, Phys. Rev. Lett. 91, 240201 (2003).
[36] D. E. Pelinovsky, P. G. Kevrekidis, D. J. Frantzeskakis,

and V. Zharnitsky, Phys. Rev. E 70, 047604 (2004).
[37] P. G. Kevrekidis, D. E. Pelinovsky and A. Stefanov, J.

Phys. A 39, 479 (2006).
[38] R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev.

Lett. 13, 479 (1964).
[39] S. Adhikari, Phys. Lett. A 265, 91 (2000).

http://arXiv.org/abs/nlin/0612028

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2008

	Averaging of nonlinearity management with dissipation
	S Beheshti
	KJH Law
	PG Kevrekidis
	MA Porter
	Recommended Citation


	tmp.1292008981.pdf.6cMOm

