1,005 research outputs found

    A relative gradient theory for layered materials

    Get PDF
    It is possible to remedy certain difficulties with the description of short wave length phenomena and interfacial slip in standard models of a laminated material by considering the bending stiffness of the layers. If the couple or moment stresses are assumed to be proportional to the relative deformation gradient, then the bending effect disappears for vanishing interface slip, and the model correctly reduces to an isotropic standard continuum. In earlier Cosserat-type models this was not the case. Laminated materials of the kind considered here occur naturally as layered rock, or at a different scale, in synthetic layered materials and composites. Similarities to the situation in regular dislocation structures with couple stresses, also make these ideas relevant to single slip in crystalline materials. Application of the theory to a one-dimensional model for layered beams demonstrates agreement with exact results at the extremes of zero and infinite interface stiffness. Moreover, comparison with finite element calculations confirm the accuracy of the prediction for intermediate interfacial stiffness

    The value of a network

    Get PDF
    This paper presents a simple mechanism for quantifying the value which a network createsbased upon the way in which it is connected. The mechanism is grounded in a process of information sharing by nodes and is, in a sense, an extension of Bonacich’s (1972) centrality measure

    Novel mutations in the BRCA1 and BRCA2 genes in Iranian women with early-onset breast cancer

    Get PDF
    BACKGROUND: Breast cancer is the most common female malignancy and a major cause of death in middle-aged women. So far, germline mutations in the BRCA1 and BRCA2 genes in patients with early-onset breast and/or ovarian cancer have not been identified within the Iranian population. METHODS: With the collaboration of two main centres for cancer in Iran, we obtained clinical information, family history and peripheral blood from 83 women under the age of 45 with early-onset breast cancer for scanning of germline mutations in the BRCA1 and BRCA2 genes. We analysed BRCA1 exons 11 and BRCA2 exons 10 and 11 by the protein truncation test, and BRCA1 exons 2, 3, 5, 13 and 20 and BRCA2 exons 9, 17, 18 and 23 with the single-strand conformation polymorphism assay on genomic DNA amplified by polymerase chain reaction. RESULTS: Ten sequence variants were identified: five frameshifts (putative mutations – four novel); three missense changes of unknown significance and two polymorphisms, one seen commonly in both Iranian and British populations. CONCLUSIONS Identification of these novel mutations suggests that any given population should develop a mutation database for its programme of breast cancer screening. The pattern of mutations seen in the BRCA genes seems not to differ from other populations studied. Early-onset breast cancer (less than 45 years) and a limited family history is sufficient to justify mutation screening with a detection rate of over 25% in this group, whereas sporadic early-onset breast cancer (detection rate less than 5%) is unlikely to be cost-effective

    Photon rockets and gravitational radiation

    Full text link
    The absence of gravitational radiation in Kinnersley's ``photon rocket'' solution of Einstein's equations is clarified by studying the mathematically well-defined problem of point-like photon rockets in Minkowski space (i.e. massive particles emitting null fluid anisotro\-pically and accelerating because of the recoil). We explicitly compute the (uniquely defined) {\it linearized} retarded gravitational waves emitted by such objects, which are the coherent superposition of the gravitational waves generated by the motion of the massive point-like rocket and of those generated by the energy-momentum distribution of the photon fluid. In the special case (corresponding to Kinnersley's solution) where the anisotropy of the photon emission is purely dipolar we find that the gravitational wave amplitude generated by the energy-momentum of the photons exactly cancels the usual 1/r1/r gravitational wave amplitude generated by the accelerated motion of the rocket. More general photon anisotropies would, however, generate genuine gravitational radiation at infinity. Our explicit calculations show the compatibility between the non-radiative character of Kinnersley's solution and the currently used gravitational wave generation formalisms based on post-Minkowskian perturbation theory.Comment: 21 pages, LATEX, submitted to Class. Quant. Gra

    Series Expansions for Excited States of Quantum Lattice Models

    Full text link
    We show that by means of connected-graph expansions one can effectively generate exact high-order series expansions which are informative of low-lying excited states for quantum many-body systems defined on a lattice. In particular, the Fourier series coefficients of elementary excitation spectra are directly obtained. The numerical calculations involved are straightforward extensions of those which have already been used to calculate series expansions for ground-state correlations and T=0T=0 susceptibilities in a wide variety of models. As a test, we have reproduced the known elementary excitation spectrum of the transverse-field Ising chain in its disordered phase.Comment: 9 pages, no figures, Revtex 3.0 The revised version corrects the incorrect (and unnecessary) statement in the original that H and H^eff are related by a unitary transformation; in fact they are related by via a similarity transformation. This has no implications for the calculations of spectra, but is important for matrix element

    BlindBuilder : a new encoding to evolve Lego-like structures

    Get PDF
    This paper introduces a new representation for assemblies of small Lego-like elements: structures are indirectly encoded as construction plans. This representation shows some interesting properties such as hierarchy, modularity and easy constructibility checking by definition. Together with this representation, efficient GP operators are introduced that allow efficient and fast evolution, as witnessed by the results on two construction problems that demonstrate that the proposed approach is able to achieve both compactness and reusability of evolved components
    • …
    corecore