5,161 research outputs found

    Neutrino mixing and masses in a left-right model with mirror fermions

    Full text link
    In the framework of a left-right model containing mirror fermions with gauge group SU(3)CSU(2)LSU(2)RU(1)Y_{C} \otimes SU(2)_{L} \otimes SU(2)_{R} \otimes U(1)_{Y^\prime}, we estimate the neutrino masses, which are found to be consistent with their experimental bounds and hierarchy. We evaluate the decay rates of the Lepton Flavor Violation (LFV) processes μeγ\mu \rightarrow e \gamma, τμγ\tau \rightarrow \mu \gamma and τeγ\tau \rightarrow e\gamma. We obtain upper limits for the flavor-changing branching ratios in agreement with their present experimental bounds. We also estimate the decay rates of heavy Majorana neutrinos in the channels NW±lN \rightarrow W^{\pm} l^{\mp}, NZνlN \rightarrow Z \nu_{l} and NHνlN \rightarrow H \nu_{l}, which are roughly equal for large values of the heavy neutrino mass. Starting from the most general Majorana neutrino mass matrix, the smallness of active neutrino masses turns out from the interplay of the hierarchy of the involved scales and the double application of seesaw mechanism. An appropriate parameterization on the structure of the neutrino mass matrix imposing a symmetric mixing of electron neutrino with muon and tau neutrinos leads to Tri-bimaximal mixing matrix for light neutrinos.Comment: Accepted by European Physical Journal

    Neutrino masses and mixing parameters in a left-right model with mirror fermions

    Get PDF
    In this work we consider a left-right model containing mirror fermions with gauge group SU(3)CSU(2)LSU(2)RU(1)Y_{C} \otimes SU(2)_{L} \otimes SU(2)_{R} \otimes U(1)_{Y^\prime}. The model has several free parameters which here we have calculated by using the recent values for the squared-neutrino mass differences. Lower bound for the mirror vacuum expectation value helped us to obtain crude estimations for some of these parameters. Also we estimate the order of magnitude of the masses of the standard and mirror neutrinos.Comment: 13 pages, version submitted to European Physical Journal

    Implicit 2D surface flow models performance assessment: Shallow Water Equations vs. Zero-Inertia Model

    Get PDF
    Zero-Inertia (ZI) models are used in overland flow simulation due to their mathematical simplicity, compared to more complex formulations such as Shallow Water (SW) models. The main hypothesis in ZI models is that the flow is driven by water surface and friction gradients, neglecting local accelerations. On the other hand, SW models are a complete dynamical formulation that provide more information at the cost of a higher level of complexity. In realistic problems, the usually huge number of cells required to ensure accurate spatial representation implies a large amount of computing effort and time. This is particularly true in 2D models. Hence, there is an interest in developing efficient numerical methods. In general terms, numerical schemes used to solve time dependent problems can be classified in two groups, attending to the time evaluation of the unknowns: explicit and implicit methods. Explicit schemes offer the possibility to update the solution at every cell from the known values but are restricted by numerical stability reasons. This can lead to very slow simulations in case of using fine meshes. Implicit schemes avoid this restriction at the cost of generating a system of as many equations as computational cells multiplied by the number of variables to solve. In this work, an implicit finite volume numerical scheme has been used to solve the 2D equations in both ZI and SW models. The scheme is formulated so that both quadrilateral and triangular meshes can be used. A conservative linearization is done for the flux terms, leading to a non-structured matrix for unstructured meshes thus requiring iterative methods for solving the system. A comparison between 2D SW and 2D ZI is done in terms of performance, efficiency and mesh requirements, in which both models benefit of an implicit temporal discretization in steady and nearly-steady situations

    Implicit finite volume simulation of 2D shallow water flows in flexible meshes

    Get PDF
    In this work, an implicit method for solving 2D hyperbolic systems of equations is presented, focusing on the application to the 2D shallow water equations. It is based on the first order Roe''s scheme, in the framework of finite volume methods. A conservative linearization is done for the flux terms, leading to a non-structured matrix for unstructured meshes thus requiring iterative methods for solving the system. The validation is done by comparing numerical and exact solutions in both unsteady and steady cases. In order to test the applicability of the implicit scheme to real world situations, a laboratory scale tsunami simulation is carried out and compared to the experimental data. The implicit schemes have the advantage of the unconditional stability, but a quality loss in the transient solution can appear for high CFL numbers. The properties of the scheme are well suited for the simulation of unsteady shallow water flows over irregular topography using all kind of meshes

    Homoeologous chromosomal location of the genes encoding thionins in wheat and rye

    Get PDF
    Thionins are high sulphur basic polypeptides present in the endosperm of Gramineae. In wheat there are three thionins encoded by genes located in the long arms of chromosomes 1A, 1B and 1D. Rye has one thionin encoded by a gene which has been assigned to chromosome 1R after analysis of the Imperial-Chinese Spring rye-wheat disomic addition lines. Commercial varieties and experimental stocks with a 1B/1R substitution carry the thionin from rye ( R) instead of the B thionin from wheat. The R thionin gene is not located in the large chromosomal segment representing most of the short arm of chromosome 1R

    Marginal bone loss around implants placed in maxillary native bone or grafted sinuses: a retrospective cohort study

    Full text link
    Objectives To assess differences in marginal bone loss around implants placed in maxillary pristine bone and implants placed following maxillary sinus augmentation over a period of 3 years after functional loading. Material and methods Two cohorts of subjects (Group 1: Subjects who received sinus augmentation with simultaneous implant placement; Group 2: Subjects who underwent conventional implant placement in posterior maxillary pristine bone) were included in this retrospective study. Radiographic marginal bone loss was measured around one implant per patient on digitized panoramic radiographs that were obtained at the time of prosthesis delivery (baseline) and 12, 24, and 36 months later. The influence of age, gender, smoking habits, history of periodontal disease, and type of prosthetic connection (internal or external) on marginal bone loss was analyzed in function of the type of osseous support (previously grafted or pristine). Results A total of 105 subjects were included in this study. Cumulative radiographic marginal bone loss ranged from 0 mm to 3.9 mm after 36 months of functional loading. There were statistically significant differences in marginal bone loss between implants placed in grafted and pristine bone at the 12‐month assessment, but not in the subsequent progression rate. External prosthetic connection, smoking, and history of periodontitis negatively influenced peri‐implant bone maintenance, regardless of the type of osseous substrate. Conclusions Implants placed in sites that received maxillary sinus augmentation exhibited more marginal bone loss than implants placed in pristine bone, although marginal bone loss mainly occurred during the first 12 months after functional loading. Implants with external implant connection were strongly associated with increased marginal bone loss overtime.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102685/1/clr12122.pd

    GeV-scale neutrinos: interactions with mesons and DUNE sensitivity

    Full text link
    The simplest extension of the SM to account for the observed neutrino masses and mixings is the addition of at least two singlet fermions (or right-handed neutrinos). If their masses lie at or below the GeV scale, such new fermions would be produced in meson decays. Similarly, provided they are sufficiently heavy, their decay channels may involve mesons in the final state. Although the couplings between mesons and heavy neutrinos have been computed previously, significant discrepancies can be found in the literature. The aim of this paper is to clarify such discrepancies and provide consistent expressions for all relevant effective operators involving mesons with masses up to 2 GeV. Moreover, the effective Lagrangians obtained for both the Dirac and Majorana scenarios are made publicly available as FeynRules models so that fully differential event distributions can be easily simulated. As an application of our setup, we numerically compute the expected sensitivity of the DUNE near detector to these heavy neutral leptons.Comment: v4: Minor updates and text modifications. Published in EPJC. FeynRules models performance improved, B mesons include

    The shallow water equations and their application to realistic cases

    Get PDF
    The numerical modelling of 2D shallow flows in complex geometries involving transient flow and movable boundaries has been a challenge for researchers in recent years. There is a wide range of physical situations of environmental interest, such as flow in open channels and rivers, tsunami and flood modelling, that can be mathematically represented by first-order non-linear systems of partial differential equations, whose derivation involves an assumption of the shallow water type. Shallow water models may include more sophisticated terms when applied to cases of not pure water floods, such as mud/debris floods, produced by landslides. Mud/debris floods are unsteady flow phenomena in which the flow changes rapidly, and the properties of the moving fluid mixture include stop and go mechanisms. The present work reports on a numerical model able to solve the 2D shallow water equations even including bed load transport over erodible bed in realistic situations involving transient flow and movable flow boundaries. The novelty is that it offers accurate and stable results in realistic problems since an appropriate discretization of the governing equations is performed. Furthermore, the present work is focused on the importance of the computational cost. Usually, the main drawback is the high computational effort required for obtaining accurate numerical solutions due to the high number of cells involved in realistic cases. However, the proposed model is able to reduce computer times by orders of magnitude making 2D applications competitive and practical for operational flood prediction. Moreover our results show that high performance code development can take advantage of general purpose and inexpensive Graphical Processing Units, allowing to run almost 100 times faster than old generation codes in some cases

    Morteros de cemento mejorados con la adición de cenizas volantes carbonatadas provenientes de la incineración de residuos

    Get PDF
    This article presents the results of a research developing high performance cement mortars with the addition of municipal solid waste incineration fly ash (MSWIFA) stabilized as insoluble carbonates. The encapsulation of hazardous wastes in mortar matrixes has also been achieved. The ashes present high concentrations of chlorides, Zn and Pb. A stabilization process with NaHCO3 has been developed reducing 99% the content of chlorides. Developed mortars replace 10% per weight of the aggregates by treated MSWIFA. Physical/mechanical properties of these mortars have been studied. Presence of Zn, Pb, Cu and Cd has been also analyzed confirming that leaching of these heavy metal ions is mitigated. Conclusions prove better behavior of CAC and CSA mortars than those of CEM-I and CEM-II cement. Results are remarkable for the CAC mortars, improving reference strengths in more than 25%, which make them a fast-curing product suitable for the repair of structures or industrial pavements.Este artículo presenta los resultados del desarrollo de morteros mejorados con la incorporación de cenizas volantes de residuos sólidos urbanos inertizadas en forma de carbonatos. Además se consigue la encapsulación de un residuo peligroso. Las cenizas presentan una alta concentración de cloruros, Zn y Pb. Se ha desarrollado un proceso de estabilización con NaHCO3 reduciendo en un 99% el contenido de cloruros. Los morteros reemplazan un 10% en peso del árido por cenizas tratadas. Se han analizado sus propiedades físico/mecánicas y la presencia de Zn, Pb, Cu y Cd. Se demuestra un mejor comportamiento de los morteros de CAC y CSA que los de CEM-I y CEM-II y se mitiga el lixiviado de metales pesados. Los resultados son significativos en los morteros CAC al mejorar las resistencias de los de referencia en un 25%. Los morteros desarrollados son de curado rápido adecuados para la reparación de estructuras o soleras industriales
    corecore