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Abstract The numerical modelling of 2D shallow flows in complex geome-
tries involving transient flow and movable boundaries has been a challenge
for researchers in recent years. There is a wide range of physical situations
of environmental interest, such as flow in open channels and rivers, tsunami
and flood modelling, that can be mathematically represented by first-order
non-linear systems of partial differential equations, whose derivation involves
an assumption of the shallow water type. Shallow water models may include
more sophisticated terms when applied to cases of not pure water floods, such
as mud/debris floods, produced by landslides. Mud/debris floods are unsteady
flow phenomena in which the flow changes rapidly, and the properties of the
moving fluid mixture include stop and go mechanisms. The present work re-
ports on a numerical model able to solve the 2D shallow water equations even
including bed load transport over erodible bed in realistic situations involving
transient flow and movable flow boundaries. The novelty is that it offers accu-
rate and stable results in realistic problems since an appropriate discretization
of the governing equations is performed. Furthermore, the present work is
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focused on the importance of the computational cost. Usually, the main draw-
back is the high computational effort required for obtaining accurate numerical
solutions due to the high number of cells involved in realistic cases. However,
the proposed model is able to reduce computer times by orders of magnitude
making 2D applications competitive and practical for operational flood predic-
tion. Moreover our results show that high performance code development can
take advantage of general purpose and inexpensive Graphical Processing Units
(GPU), allowing to run almost 100 times faster than old generation codes in
some cases.

Keywords unsteady shallow flows, wetting/drying fronts, finite volumes,
river flows

1 Introduction

Finite volume methods, initially developed for solving problems in gas dy-
namics, have been accepted as a reliable and accurate tool for the numerical
solution of the shallow water equations [19]. From pioneering works to present,
the solution of the Euler equations for gas dynamics is based on the physics
and the mathematical properties of the hyperbolic differential equations. Hy-
perbolic equations provide solutions using a set of elementary waves derived
from the equations themselves. Numerical techniques were first derived on that
basis for the inviscid Euler equations and have been considered a starting point
in the numerical modelling of shallow water flows traditionally paying little at-
tention to the presence of source terms associated to bed friction and variations
of the bed slope. Unsteady problems were tackled with explicit schemes where
the stability was controlled by the Courant-Friedrichs-Lewy (CFL) condition.
Nevertheless, when solving real problems all sorts of situations are likely to be
encountered and, in a wide range of them, flow is dominated by bed friction
and bed variations.

Numerical experience has shown that appropriate discretization of source
terms is necessary. It can be argued that in some cases even naive discretiza-
tions of the source terms may work, but there are well documented situations
in which only sophisticated schemes can perform adequately. When incorporat-
ing the presence of the source terms in a given specific finite volume scheme,
the main focus has been traditionally put on the preservation of still water
equilibrium. This requirement has led to the notion of well-balanced schemes
that have resulted in efficient explicit finite volume models of shallow water
flow. But, when well-balanced numerical schemes are applied to real cases with
irregular geometries and transient flow, involving large variations in the bed
slope, advance over dry areas and also the drying of initially wetted regions,
these schemes can compromise the quality and reliability of the solution [23].

In complex cases, flow features impose heavier restrictions than the clas-
sical Courant-Friedrichs-Lewy (CFL) condition on the time step size, derived
for the homogeneous case without source terms, that may lead to inefficient
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computations that cannot be explained when coming back to the fundamen-
tals of the basic numerical scheme. One of the most dramatic consequences is
the appearance of negative values of water depth, not only in wet/dry fronts,
but also in initially wet areas [13].

Therefore, even though well-balanced schemes have proved successful in a
large variety of cases, they still fail in some situations. In order to avoid insta-
bilities and a dramatic reduction of the time step, it is usually recommended
the use of different tuning parameters in the numerical simulation, as limiting
values of bed resistance or minimum cut-off depths values that compromise
mass conservation and have to be calibrated in each case. As a result, the
numerical results can be strongly affected by the selection of these values. It is
remarkable that the lack of conservation may invalidate the numerical results.

The presence of source terms requires the construction of new numerical
schemes appropriate to the nature of the equations, instead of using extensions
of schemes constructed for the simple, homogeneous case. It is important to
remark that, in presence of source terms, the number of waves involved in
the equations is different from the number of waves provided in absence of
them. Considering that numerical schemes constructed departing from the
homogeneous case are based on the definition of this reduced number of waves,
it is clear that numerical schemes for hyperbolic equations with source terms
deserve their own analysis and development.

The definition of augmented numerical schemes (augmented in the sense
of considering an extra wave arising from the presence of source terms) allows
explaining all problems detailed before and provides the correct steps to es-
timate correctly the different types of source terms involved in the problem
[14]. This means that no tuning parameter neither any flux redistribution is
necessary. Augmented numerical schemes allow recovering the stability region
given by the basic CFL condition and no time reduction is necessary. Exact
conservation is guaranteed. It can be said that the renewed descriptions made
for augmented numerical schemes are the key to explain and avoid important
difficulties in real applications. These advances, in combination with the ge-
ometric flexibility inherent to unstructured-grid models, provide an excellent
tool in environmental engineering.

Physically based simulations of complex systems usually require large com-
putational facilities to be completed in a reasonable time. Moreover when the
simulated phenomenon is unsteady and based on a dynamical estimation of
the updating time step, the computational performance is an important topic
to be taken into account. One of the most widespread strategies to reduce the
computational cost is the use of parallel techniques, involving a suitable num-
ber of processors. Geophysical flows usually involve large size domains and long
time scales. Practical applications require a compromise between spatial ac-
curacy and computational efficiency. In order to achieve the necessary spatial
resolution, rather fine grids become necessary in many cases requiring more
data storage, increasing proportionally the number of operations and reducing
the allowable time step size for explicit calculations. When, at the same time,
a reasonable computational time is desired, the use of GPU codes is one of the
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options for computing large space and temporal domain problems. The idea
of accelerating the calculations in unsteady hydraulic simulation using parallel
implementations and using GPU was recently reported in [17], [22] [3], [10],
[11] and [9)].

2 Mathematical model
2.1 Governing equations

The mathematical model considered is based on the shallow flow equations,
where the general three-dimensional conservation laws are depth averaged.
The pressure distribution is considered hydrostatic and several frictional terms
can be assumed so that the 2D hydrodynamic equations are written in global
coordinates as follows:

oU | 9F(U) | 9G(U)

E—i_ ox oy =S +5 (1)

where

U = (h, hu, hv)" (2)

are the conserved variables with h representing flow depth in the z coordinate
and (u,v) the depth averaged components of the velocity vector. The fluxes
are given by

1 T
F = (hu7 hu? + §g¢,h2, huv)
1 T
G = <hv, huv, hv* + nghQ) (3)

with g, = gcos? ¢ and 1 the direction cosine of the bed normal with respect
to the vertical. The physical basis of this gravity projection is explained in [7]
and it is of utmost importance for not ruining the numerical predictions when
the simulation involves the presence of steep slopes.

The term S, denotes the frictional effects in the bed, and is defined as

T T T
S, = <O7 L ; _b7y> (4)
p’ P

with 7 4,7, the bed shear stress in the x and y directions respectively and
p the density. The main rheological properties are governed by the frictional
forces. These interactions are computed by means of semiempirical friction
laws depending on the case. One of the most widely used friction formulations
is Manning’s law where:
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n2uvu? + v2 n2vvu? + v2
Tox = PQhT, Toy = PQhT (5)

in terms of the Manning roughness coefficient n.

On the other hand, the term S is the term including forces associated to
the bed slopes

Thanks to the hyperbolic character of (1) it is possible to obtain a Jacobian
matrix, J,, which is built by means of the flux normal to a direction given by
the unit vector n, E, = Fn, + Gn,,

OEn oF oG
In=%g ~au™ T ag™ (6)

whose components are

0 Ng Ny
Jo = | (gph — u®)ng — uvny, vny, + 2un, Uy (7)
(gph — v2)ny — UV VN ung + 2vn,,

The eigenvalues of this Jacobian matrix constitute the basis of the upwind
technique which is detailed in the next subsection.

On the other hand, the bed evolution can be modeled through the Exner
equation, which is basically a movable bed continuity equation where the bed
level time variations are due to the solid fluxes which cross the control vol-
ume. In this work the authors only focus on highly concentrated bed-load
phenomena and, consequently, the 2D Exner equation is:

0z 04s .«

a—’_g ox

0qs y
0y

+¢ =0 (8)

where & = ﬁ, p is the material porosity and ¢ ., ¢s,, are the solid discharges
in the = and y directions respectively. They are computed as a function of
excess bed shear stress with respect to the critical value and taking into ac-
count the bed shear stress direction. This bed load transport is often expressed

through the following dimensionless parameter [4]:

- ||
P G-, ®)

where s = ps/py, is the ratio of solid material (ps) over water (p,,) densities,
and d,, is the grain median diameter. According to the numerical assessment
performed in [7], several empirical formulae can be chosen for computing the
dimensionless bed load discharge. Among them, the present work includes
results using the Meyer-Peter and Muller [12] formula:

D =8(0—6,)°? (10)

where 0 is the dimensionless shear stress
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n2

= ———— (u? + 0 11
(s — 1)d,,h'/3 ( ) (11)
and 6. is the critical shear stress. This formula is only applied when the shear
stress is larger than the critical shear stress. Otherwise there is no sediment
transport.

2.2 Numerical method

The numerical scheme is constructed by defining an approximate Jacobian
matrix J at each k edge of length [, between neighbouring cells defined through
the normal flux E, so that the volume integral in the cell 7 of area A; at time
ttl =" + At is expressed as:

NE 3
< - A
Ut = - Y S (A - Boperi g (12)
k=1m=1 4

The superscript minus in (12) implies that only the incoming waves are con-
sidered for updating the flow variables of each cell, defining A= % (X - ‘XD

where ) are the discrete representation of the Jacobian matrix eigenvalues and
e the corresponding eigenvectors. Coefficients o and 8 are used to properly
formulate the Riemann solver and can be found in [14]. Furthermore, special
care is considered when calculating wet/dry fronts with the present method.
The strategy proposed is based on enforcing positive values of interface dis-
crete water depths coming from a detailed study of the Riemann problem [14],
[15]. When they become negative, the numerical values of the friction and bed
slope source terms is reduced instead of diminishing the time step.

Equation (8) is also integrated in a grid cell 2;. Using Gauss theorem:

A a0+ f €qondl = 0 (13)
dt J o, 00

where Gsn = (QS,xnz + qs,yny)~

Assuming a piecewise representation of the variable z and that the second
integral can be written as the sum of fluxes across the cell edges, the bed level
is updated as:

NE

. . At

R Zﬁqsn,kT (14)
k=1 '

where:

* Gsn,i if ’5\8 >0
= LS 15
Qsn k {qsn,j if Ag <0 (15)
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where gsn ; and gqn,; are the bed load discharge computed at the neighbouring
cells 7, j, and A is the numerical bed celerity estimated as:
N 5QSn,k

As = 1
’ 02y ( 6)

with d¢en k = Gsn,j — @sn,i and 0z = z; — z; provided that the bed is not flat.
Otherwise, the numerical bed celerity is estimated as the average liquid flow
celerity.

2.3 Numerical stability and time step calculation

The explicitly updated conserved variables are defined through the fluxes ob-
tained within each cell, so, the computational time step has to be chosen small
enough for ensuring a stability region. Traditionally, the numerical stability
has been controlled through a dimensionless parameter, CFL,

min(x)
maxp, m |Xm|k

At = CFL CFL < 1 (17)

where x is a relevant distance between neighbouring cells [14] and A are
the hydrodynamic celerities. The stability criterion is revisited for including a
discrete estimation of the bed celerity, As, as in [8],

min(x)

maxy ., \XM,XSM

At = CFL CFL < 1 (18)

With this numerical strategy, the stability condition takes into considera-
tion the most restrictive numerical wave speed coming from the hydrodynam-
ical and morphodynamical solvers. The resulting global time step is used for
updating the whole set of conserved hydrodynamic and morphological vari-
ables in the system of equations.

3 Numerical Results
3.1 Case 1. Unsteady flow around a conical island

In this section, the model is applied to a laboratory test case originally per-
formed by [2]. A tsunami wave, generated by a lab-scale wavemaker, passes
around a conical island, located in the center of a 26m x 27.6m flat and fric-
tionless domain. The base diameter of the island is 7.2m and the top diameter
2.2m with a height of 0.625m. A still water level of Hy = 0.32m is assumed as
initial condition and the inlet wave is set as a boundary condition for water
level H in one of the 27.6m sides as follows:
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H = Hy + Asech? [Cl(t_T)} (19)
Cy
where
A 4HyC
Ci=+gHy |1+ — Cy = Hyy| ———— 20
1 giip ( + 2H0) ) 2 0 314\/9?0 ( )

being A the solitary wave amplitude and 7T the time at which the wave peak
enters the domain (A = 0.032m and T = 2.84s for the case considered in this
work).

The purpose of this test is to prove the robustness of the 2D shallow water
model when dealing with transient and long-wave runup over a 2D topogra-
phy with abrupt changes in the dry-wet interfaces. The numerical results are
compared with observed data from [2] in three different gauges, as shown in
Figure 3.

Fig. 1 Case 1. Water level probes location.

Figure 2 shows a 3D representation of the water level all over the domain
at several times. As seen, stability and symmetry is fully preserved at all
times of the simulation. Figure 3 shows the comparison between numerical
and observed data for the three water level gauges. In general, the shallow
water model accurately predicts the main water level peaks and reflections,
specially for gauges 2 and 3.
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Fig. 2 Case 1. 3D representation of the water level at t = 0, 9s, 10s, 15.5s, 25s and 30s

(z-axis is exaggerated 5x).
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Fig. 3 Case 1. Water level (numerical vs. observed) for all the gauging points.

3.2 Case 2. Rainfall-runoff simulation in urban areas: Triangular grids and

local mesh refinement

This test case has been selected from [21] (Copyright: Environment Agency,
2009) that discusses the theoretical background to 2D flood inundation mod-
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elling and makes recommendations for benchmark test cases to differentiate
between 2D model types in terms of performance and predictive capability.
The work is devoted to definition of the benchmark test cases, the application
of a range of software packages to these tests and comparative reporting of the
outcome from the tests.

This example has been chosen to test the model capability to simulate
shallow inundation originating from a point source and from rainfall applied
directly to the model grid, at relatively high resolution. This section explores
the use of two different kind of triangular grids combined with the possibility
of locally refining the mesh. The test considered here, is a rectangular domain
of 960 m x 400 m in the city of Glasgow (UK). A spatially uniform rainfall
event of 400mm/h of intensity between ¢t = 1min and ¢ = 4min is assumed
all over the domain. It is combined with an isolated source inflow located in
the northeastern part as displayed in Figure 4. The local inflow discharge is
assumed in a Gaussian shape centered at t = 37min of maximum discharge
Qmaz = d>m> /s and an standard deviation of o = 7.5min. These elements
are included as mass source/sink terms in the continuity equation. Free open
boundaries are considered. Two Manning’s roughness coefficients are used,
distinguishing between road and pavements n; = 0.02 and the rest of the soil
uses ny = 0.05. Some gauge points are placed inside the domain, shown in
Figure 4.

Fig. 4 Case 2. Domain of study and gauge location.

Despite the wide use of structured meshes, complex geometries for internal
or external boundaries are problematic to be represented if not using unstruc-
tured meshes. Moreover, when dealing with topographic representation some
recent works [5] have shown the benefit of using unstructured meshes in un-
steady hydraulic simulations over irregular topography. The numerical results
is sensitive to the grid resolution. Hence grid refinement is clearly an option
to modify the whole resolution. In that sense, adaptive grid refinement, read-
ily available when using triangular unstructured meshes [18] and designed to
follow local bed variations or irregular boundaries can be very useful. Four dif-
ferent mesh configurations are examined in this section: a uniform Delaunay
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grid, a locally refined Delaunay grid, a uniform equilateral grid and a locally
refined equilateral grid. The detail of the four kind of meshes is displayed in
Figure 5.

Fig. 5 Case 2. Detail of the meshes: Uniform Delaunay (upper left), uniform equilateral
(lower left), locally refined Delaunay (upper right) and locally refined equilateral (lower
right).

The results in terms of temporal evolution of water surface elevation (left)
and velocity magnitude (right) at a few probes for all the grids are plotted in
Figure 6.
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Fig. 6 Case 2. Temporal evolution of water surface elevation (left) and velocity magnitude

(right) at gauge points 1-5.
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The results are sensitive to the mesh used. This is noticeable in the water
surface level but even more in the water velocity values. The computational
times in this case are very similar on all the grids. To compute a 5h event, the
model took around 1h when using a single Intel Core i7-3770K CPU 3.5GHz
30min when using a 4 processor parallel CPU version and 1min when using
a GPU implementation with GPU NVIDIA TITAN Black [16].

3.3 Case 3. Large scale inundation flow

The Ebro River basin is managed by the Ebro River Basin Authority (Con-
federacién Hidrografica del Ebro-CHE) (www.chebro.es), an autonomous in-
stitution depending of the Environmental Ministry which is responsible for
the management, regulation and maintenance of the drainage basin of this
river. Measurements registered in their meteorological and gauging stations
have helped us to carry out this study. It is a river with an average discharge
of @ = 400m?/s reaching often @ = 2500m?/s (Return period 5 years). In
this work, we have focused our study in the middle part of this river which
is the most affected zone by the floods. It is a 125km long stretch of river
that flows between the towns of Castején de Ebro (upstream) and Zaragoza
(downstream) over a total extension of 744km?. The information provided at
those locations is used as boundary conditions in the numerical model.

To carry out an optimal computational representation of the domain, dif-
ferent features were taken into consideration: the roughness, the topography
and the mesh refinement. To represent the roughness, different soil uses were
considered; to introduce topographical information a 5m x 5m digital terrain
model was used together with a river bed reconstruction [6] and a calibration
process to find important zones requiring a high level of discretization. Dry bed
initial conditions (h = 0,u = v = 0) were assumed to generate suitable steady
flow conditions that could be used as realistic initial conditions for inundation
flow simulations.

The footprint of the maximum flooded area and the time evolution of the
depth of water in some measurement stations between Castejon de Ebro and
Zaragoza (Tudela and Novillas) were also used to calibrate the mesh. A formula
[1] which provides the % of adjustment between the observed maximum flood
area (Aops) and the corresponding calculated area (Ag;,, ) as the ratio between
its coincidence and their sum is used

Aobs N Agim

Fit =100
ita(%) Aops U Agim

(21)

This parameter penalizes the percentage in which areas do not coincide;
either by excess or default. Analysing this parameter, we have also to consider
that in Apps the information comes from the limits of the flooded area without
considering dry land inside if it exists. For this reason, rather than considering
Agim, the boundary convex hull of Ag;,, has been used.
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For the 2015 event, a steady state of discharge Q = 473m?/s was used
as initial condition. The upstream boundary condition corresponding to the
2015 flood was a discharge hydrograph reaching a discharge peak of Qpqr =
2691m3 /s in Castején (see Figure 8). The duration of the event is almost 21
days, one of the largest of the events analysed, and it has been computed in
17 hours (with GPU NVIDIA TITAN Black). A snapshot plan view of the
flooded surface along the river reach can be observed in Figure 7 where a
zoom view of the velocity field near Alagén is also provided to highlight the
detail of information provided by the model. A summary of the data used in
the two flooding events reported here is provided in Table 1.

Fig. 7 Case 3. Ebro inundation plan view plot with a detail of the velocity field near Alagén.

Table 1 Case 3. Large scale inundation events.

Event Maximum discharge  Flood duration = Computational time
2009 1800 m3/s 582.48 h 17.25 h
2015 2691 m3/s 503.75 h 17 h

Since Ebro River basin authorities manage interventions when a flood event
takes place, their interest on discharge time evolution and hydrograph con-
veyance makes its representation also quite interesting. In Figure 8 the inlet
hydrographs as well as the time evolution of discharge at strategic points where
gauging stations are placed is shown for two analysed cases, the 2009 (left)
and the 2015 (right) event. The evolution of the hydrograph along the river
is in good agreement with the observed data. The correct simulation of the
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arrival time of the flood wave at each point is quite important, and the model
is able to reproduce it properly. The other relevant effect is the change on the
wave shape due to the storage capacity of the floodplain, which also can be
seen on the results due to the use of a 2D model guaranteed by the quality in
the mesh construction.

Fig. 8 Case 3. Inlet hydrograph, measured and predicted hydrographs for the 2009 Ebro
flood (left) and the 2015 Ebro flood (right) at gauge points of Tudela and Zaragoza.

In Figure 9 the time evolution of the measured and calculated water surface
elevation at Tudela (upper), Novillas (middle) and Alagén (lower) are repre-
sented for both the 2009 (left) and the 2015 (right) event. The prediction of the
water surface levels is also satisfactory. Due to the set of initial conditions, the
results differ at the beginning of the simulation. The tendency followed by the
numerical results is quite similar to the measured data, and only differences
of cm are seen in terms of water level. The importance of having complete,
updated and accurate topographical information so that the computational
mesh results are optimal cannot be ignored. River beds are constantly chang-
ing due to erosion and other phenomena and actual topography information
is necessary. The simulations are both based on recent topographical data and
the results corresponding to the oldest event (2009) display less agreement. An
optimal computational mesh has been generated and calibrated for this reach
of the Ebro River where the 2015 event has been reproduced reaching a flooded
surface fit of 84.3%. All topics previously appointed to generate an accurate
computational model need high performing technology to manage with large
domains (744km?), great number of computational cells (867672) and fast and
accurate resolution. All of that is obtained using a GPU-parallelized upwind
numerical scheme which simulates a hydrograph of 21 days in 17 hours and
makes feasible to reproduce events on a real-time basis.

3.4 Case 4. Unsteady erosive flow

This section aims at validating the erosion/sedimentation component of the
model. Two dam-break test cases have been simulated and compared with the
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Fig. 9 Case 3. Comparison of measured and predicted water surface elevation at three
points along the river for the 2009 event (left) and 2015 event (right).

experimental data provided in [20], with the Meyer-Peter & Miiller erosion
model (see Table 2). The bed sediment is assumed as 100% gravel with a mean
diameter d,,, = 3.0mm, a density p = 2390kgm 2 and a porosity p = 0.41.
The roughness is modelled by setting a Manning’s coefficient n = 0.01 for the
channel structure and 0.018 for the sediment.

The case setup is a 80m long, 1.2m wide and 0.8m deep glass flume, as
shown in Figure 10. The position of the probes is also shown in the same sketch.
The reservoir has a fixed bed with two different longitudinal slope values (Sy =
0 and Sy = 0.003). Downstream the erodible bed has a constant longitudinal
slope of Sy = 0.003. A rigid wall 0.31m high at the end of the domain allows
to hold a second water level. For all the simulations, a 147000 cell locally
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refined unstructured triangular mesh is used for the spatial discretization of
the domain.

Fig. 10 Case 4. Sketch of the flume for the erosional test case (adapted from [20]).

Table 2 Case 4. Simulations setup.

Test  (h+ 2)upstream(m) (b 4 2)downstream(m)  Erosion model
1 0.25 0.10 Meyer-Peter & Miiller
2 0.3 0.05 Meyer-Peter & Miiller

Figure 11 show the water level results for all the probes located along the
whole domain, together with the experimental results from [20] for Test 2
as a sample. The numerical water levels agree with the measured values in
every single probe of the domain for the four test cases. Regarding the erosion
numerical results, a general good behaviour is observed for the Meyer-Peter &
Miiller model.
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Fig. 11 Case 4, Test 2. Water level (numerical vs. observed) for all the gauging points.

4 Conclusions

A complete 2D dynamic shallow water model in combination with the Exner
equation, based on finite volumes over triangular grids has been used to sim-
ulate environmental flows including urban flooding. It offers the possibility to
fit the calculation domain to complex geometries. The discretization method
proposed is fully conservative and able to tackle highly irregular boundaries.
The validation of the model as a tool has been based on water depth and water
level from laboratory test cases and a field test case corresponding to docu-
mented flood events in the Ebro river. In the present paper, this technique has
been shown to work well in very demanding hydraulic situations of practical
interest.

The main conclusions that can be drawn from our numerical study is that
water depth predictions against measured values are good indications that the
mathematical formulation, based on the main hypothesis of hydrostatic pres-
sure and Manning friction model, is a good compromise between description
of physical phenomena and practical interest.
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From the numerical point of view, the extended Riemann solver used is
useful to ensure robust solutions controlled by the classical CFL condition
and, therefore, avoids the necessity of reducing the stability region, refining
the grid or using tuning parameters. It is able to cope with unsteady flow over
rough, irregular and dry beds and produces stable and conservative numerical
solutions. Furthermore, the accuracy provided by the first order finite volume
scheme is sufficient for the kind of flow and the uncertainty of the experimental
and field data available.

It must be pointed out that the accuracy of the numerical solution is related
to the grid refinement but the proposed numerical model is able to provide ac-
curate results of the water depth variable on triangular grid cells with nearly
the size of the main streets. The good performance of the numerical model
proposed in the situations of interest presented offers the possibility to simu-
late different scenarios and configurations for predictive purposes. The use of
unstructured meshes has been considered, since this grid topology is the only
one which avoid misleading preferential flow directions and offers an easy way
to achieve local mesh refinement.

For this purpose, the shallow water equations have been discretized in
Finite Volumes and the numerical schemes implemented to run on a GPU
card. The resulting model can be used over realistic bathymetries in afford-
able computation time even when considering large domains and retaining a
high level of accuracy. The saving of computational time allows to address
large-number-of-cells, large-time and large-space scenarios, strengthening pre-
ventive measures and enhancing response capacities. This opens the possibility
of facing the hydraulic and sediment transport analysis in a particular location
for several years or the geomorphological changes in domains of a regional-size.
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