1,183 research outputs found

    Instrument landing systems for the space shuttle

    Get PDF
    Comparison of instrument landing systems for space shuttle and aircraf

    Non-Newtonian Mechanics

    Get PDF
    The classical motion of spinning particles can be described without employing Grassmann variables or Clifford algebras, but simply by generalizing the usual spinless theory. We only assume the invariance with respect to the Poincare' group; and only requiring the conservation of the linear and angular momenta we derive the zitterbewegung: namely the decomposition of the 4-velocity in the newtonian constant term p/m and in a non-newtonian time-oscillating spacelike term. Consequently, free classical particles do not obey, in general, the Principle of Inertia. Superluminal motions are also allowed, without violating Special Relativity, provided that the energy-momentum moves along the worldline of the center-of-mass. Moreover, a non-linear, non-constant relation holds between the time durations measured in different reference frames. Newtonian Mechanics is re-obtained as a particular case of the present theory: namely for spinless systems with no zitterbewegung. Introducing a Lagrangian containing also derivatives of the 4-velocity we get a new equation of the motion, actually a generalization of the Newton Law a=F/m. Requiring the rotational symmetry and the reparametrization invariance we derive the classical spin vector and the conserved scalar Hamiltonian, respectively. We derive also the classical Dirac spin and analyze the general solution of the Eulero-Lagrange equation for Dirac particles. The interesting case of spinning systems with zero intrinsic angular momentum is also studied.Comment: LaTeX; 27 page

    Areal-averaged trace gas emission rates from long-range open-path measurements in stable boundary layer conditions

    Get PDF
    Measurements of land-surface emission rates of greenhouse and other gases at large spatial scales (10 000 m<sup>2</sup>) are needed to assess the spatial distribution of emissions. This can be readily done using spatial-integrating micro-meteorological methods like flux-gradient methods which were evaluated for determining land-surface emission rates of trace gases under stable boundary layers. Non-intrusive path-integrating measurements are utilized. Successful application of a flux-gradient method requires confidence in the gradients of trace gas concentration and wind, and in the applicability of boundary-layer turbulence theory; consequently the procedures to qualify measurements that can be used to determine the flux is critical. While there is relatively high confidence in flux measurements made under unstable atmospheres with mean winds greater than 1 m s<sup>−1</sup>, there is greater uncertainty in flux measurements made under free convective or stable conditions. The study of N<sub>2</sub>O emissions of flat grassland and NH<sub>3</sub> emissions from a cattle lagoon involves quality-assured determinations of fluxes under low wind, stable or night-time atmospheric conditions when the continuous "steady-state" turbulence of the surface boundary layer breaks down and the layer has intermittent turbulence. Results indicate that following the Monin-Obukhov similarity theory (MOST) flux-gradient methods that assume a log-linear profile of the wind speed and concentration gradient incorrectly determine vertical profiles and thus flux in the stable boundary layer. An alternative approach is considered on the basis of turbulent diffusivity, i.e. the measured friction velocity as well as height gradients of horizontal wind speeds and concentrations without MOST correction for stability. It is shown that this is the most accurate of the flux-gradient methods under stable conditions

    Casimir force acting on magnetodielectric bodies embedded in media

    Full text link
    Within the framework of macroscopic quantum electrodynamics, general expressions for the Casimir force acting on linearly and causally responding magnetodielectric bodies that can be embedded in another linear and causal magnetodielectric medium are derived. Consistency with microscopic harmonic-oscillator models of the matter is shown. The theory is applied to planar structures and proper generalizations of Casimir's and Lifshitz-type formulas are given.Comment: 15 pages, 2 figures; minor additions and corrections, to appear in PR

    Beta-delayed deuteron emission from 11Li: decay of the halo

    Get PDF
    The deuteron-emission channel in the beta-decay of the halo-nucleus 11Li was measured at the ISAC facility at TRIUMF by implanting post-accelerated 11Li ions into a segmented silicon detector. The events of interest were identified by correlating the decays of 11Li with those of the daughter nuclei. This method allowed the energy spectrum of the emitted deuterons to be extracted, free from contributions from other channels, and a precise value for the branching ratio B_d = 1.30(13) x 10-4 to be deduced for E(c.m.) > 200 keV. The results provide the first unambiguous experimental evidence that the decay takes place essentially in the halo of 11Li, and that it proceeds mainly to the 9Li + d continuum, opening up a new means to study of the halo wave function of 11Li.Comment: 4 pages, 3 figure

    Nanodiamond Theranostic for Light-Controlled Intracellular Heating and Nanoscale Temperature Sensing

    Get PDF
    [Image: see text] Temperature is an essential parameter in all biological systems, but information about the actual temperature in living cells is limited. Especially, in photothermal therapy, local intracellular temperature changes induce cell death but the local temperature gradients are not known. Highly sensitive nanothermometers would be required to measure and report local temperature changes independent of the intracellular environment, including pH or ions. Fluorescent nanodiamonds (ND) enable temperature sensing at the nanoscale independent of external conditions. Herein, we prepare ND nanothermometers coated with a nanogel shell and the photothermal agent indocyanine green serves as a heat generator and sensor. Upon irradiation, programmed cell death was induced in cancer cells with high spatial control. In parallel, the increase in local temperature was recorded by the ND nanothermometers. This approach represents a great step forward to record local temperature changes in different cellular environments inside cells and correlate these with thermal biology

    Nuclear Physics Experiments with Ion Storage Rings

    Get PDF
    In the last two decades a number of nuclear structure and astrophysics experiments were performed at heavy-ion storage rings employing unique experimental conditions offered by such machines. Furthermore, building on the experience gained at the two facilities presently in operation, several new storage ring projects were launched worldwide. This contribution is intended to provide a brief review of the fast growing field of nuclear structure and astrophysics research at storage rings.Comment: XVIth International Conference on Electro-Magnetic Isotope Separators and Techniques Related to their Applications, December 2--7, 2012 at Matsue, Japa
    • …
    corecore