144 research outputs found

    Empresas nanotecnológicas en México: hacia un primer inventario

    Get PDF
    En este artículo presentamos un inventario inicial de compañías mexicanas que venden productos que son manufacturados a partir de nanotecnología, o que utilizan nanotecnología en sus operaciones. El inventario permite a los interesados identificar el número de empresas, su ubicación geográfica y los sectores industriales en los que se insertan. Esto es, de hecho, un primer acercamiento para el análisis los vínculos productivos de la nanotecnología en México. Los resultados muestran una alta concentración de empresas en dos estados: Nuevo León y la ciudad de México. Esto sucede en un contexto donde no hay una iniciativa nacional, ni una política pública específica ni datos disponibles públicamente o bases de datos que contienen información relevante

    Innovative Biogas Multi-Stage Biogas Plant and Novel Analytical System

    Get PDF
    AbstractThe here presented applied research and development project is targeted to the development and application of new and improved techniques in plant design, performance analysis and process control. Hereto following the required steps are illustrated and the goals are outlined. The project covers the development of a previously patented anaerobic digestion process, adaption of flow cytometry as an analytical instrument and investigation of innovative ways of disposal of solid fermentation wastes. The preliminary experiences with a newly built research plant employing a novel anaerobic biogas digestion technique are discussed. In this paper the first outcomes concerning the construction and operation are discussed. A novel method of disposal of the fermentation wastes is also discussed and first results are shown

    Evaluation of Zosteric Acid for Mitigating Biofilm Formation of Pseudomonas putida Isolated from a Membrane Bioreactor System

    Get PDF
    This study provides data to define an efficient biocide-free strategy based on zosteric acid to counteract biofilm formation on the membranes of submerged bioreactor system plants. 16S rRNA gene phylogenetic analysis showed that gammaproteobacteria was the prevalent taxa on fouled membranes of an Italian wastewater plant. Pseudomonas was the prevalent genus among the cultivable membrane-fouler bacteria and Pseudomonas putida was selected as the target microorganism to test the efficacy of the antifoulant. Zosteric acid was not a source of carbon and energy for P. putida cells and, at 200 mg/L, it caused a reduction of bacterial coverage by 80%. Biofilm experiments confirmed the compound caused a significant decrease in biomass ( 1297%) and thickness ( 1250%), and it induced a migration activity of the peritrichous flagellated P. putida over the polycarbonate surface not amenable to a biofilm phenotype. The low octanol-water partitioning coefficient and the high water solubility suggested a low bioaccumulation potential and the water compartment as its main environmental recipient and capacitor. Preliminary ecotoxicological tests did not highlight direct toxicity effects toward Daphnia magna. For green algae Pseudokirchneriella subcapitata an effect was observed at concentrations above 100 mg/L with a significant growth of protozoa that may be connected to a concurrent algal growth inhibition

    Análisis económico sectorial de las empresas de nanotecnología en México

    Get PDF
    En este escrito se presenta un análisis de las empresas de nanotecnología en México. Se informa sobre su distribución geográfica, sobre la clasificación económica sectorial, y sobre el lugar en la cadena de valor de las nanotecnologías. La metodología puede ser replicada sin mayores modificaciones a otros países. Los resultados registran un total de 139 empresas que trabajan con nanotecnología en México. El principal sector corresponde a la manufactura de productos químicos, y la mayoría de los productos vendidos por las empresas nanotecnológicas son medios de producción (materia prima, materiales intermedios, instrumentos y equipo) para ulteriores procesos industrialesIn this document the authors present an analysis of nanotechnology companies in Mexico. They identify geographical location, determine an economic classification and the companies' place in a simple value chain of nanotechnology. The methodology used here may be employed in other case studies to analyze the nanotechnology industry of any given country. The research indicated that there are a total of 139 nanotechnology companies in Mexico. Most companies are located in the chemical sector, and the majority of goods produced and traded are destined for further production (raw materials, intermediates, tools and equipment) for subsequent manufacturing processe

    Mechanical performance and capillary water absorption of sewage sludge ash concrete (SSAC)

    Get PDF
    Disposal of sewage sludge from waste water treatment plants is a serious environmental problem of increasing magnitude. Waste water treatment generates as much as 70 g of dry solids per capita per day. Although one of the disposal solutions for this waste is through incineration, still almost 30% of sludge solids remain as ash. This paper presents results related to reuse of sewage sludge ash in concrete. The sludge was characterised for chemical composition (X-ray flourescence analysis), crystalline phases (X-ray diffraction analysis) and pozzolanic activity. The effects of incineration on crystal phases of the dry sludge were investigated. Two water/cement (W/C) ratios (0.55 and 0.45) and three sludge ash percentages (5%,10% and 20%) per cement mass were used as filler. The mechanical performance of sewage sludge ash concrete (SSAC) at different curing ages (3, 7, 28 and 90 days) was assessed by means of mechanical tests and capillary water absorption. Results show that sewage sludge ash leads to a reduction in density and mechanical strength and to an increase in capillary water absorption. Results also show that SSAC with 20% of sewage sludge ash and W/C=0.45 has a 28 day compressive strength of almost 30 MPa. SSAC with a sludge ash contents of 5% and 10% has the same capillary water absorption coefficient as the control concrete; as for the concrete mixtures with 20% sludge ash content, the capillary water absorption is higher but in line with C20/25 strength class concretes performance

    Cell morphology governs directional control in swimming bacteria

    Get PDF
    The ability to rapidly detect and track nutrient gradients is key to the ecological success of motile bacteria in aquatic systems. Consequently, bacteria have evolved a number of chemotactic strategies that consist of sequences of straight runs and reorientations. Theoretically, both phases are affected by fluid drag and Brownian motion, which are themselves governed by cell geometry. Here, we experimentally explore the effect of cell length on control of swimming direction. We subjected Escherichia coli to an antibiotic to obtain motile cells of different lengths, and characterized their swimming patterns in a homogeneous medium. As cells elongated, angles between runs became smaller, forcing a change from a run-and-tumble to a run-and-stop/reverse pattern. Our results show that changes in the motility pattern of microorganisms can be induced by simple morphological variation, and raise the possibility that changes in swimming pattern may be triggered by both morphological plasticity and selection on morphology

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5–11 December, to 17.5% (25/143 samples) in the week 12–18, to 65.9% (89/135 samples) in the week 19–25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased from one in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons. In conclusion, we designed an RT-qPCR assay capable to detect the Omicron variant, which can be successfully used for the purpose of wastewater-based epidemiology. We also described the history of the introduction and diffusion of the Omicron variant in the Italian population and territory, confirming the effectiveness of sewage monitoring as a powerful surveillance tool
    corecore