131 research outputs found

    System identification : a survey

    Get PDF

    Regelen, rode draad door de technische/maatschappelijke verwevenheden

    Get PDF

    Model-structure selection by cross-validation

    Get PDF

    Model-structure selection by cross-validation

    Get PDF

    Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems

    Get PDF
    A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code

    Series-Parallel and Parallel Identification Schemes for a Class of Continuous Nonlinear Systems

    Get PDF
    Fig. 4(a) shows the parameter estimates under the existence of the measmable disturbance (di = 5, a\ = 0) with the parameter estimates under the ideal condition (di = a\ = 0) overlaid. Since the inserted DDR's remove the disturbance from the inputoutput relation, the disturbance does not slow down the identification speed. Fig. 4(6) shows the parameter estimates under the existence of the unmeasurable disturbance (di = 0, d 2 = 1) with the parameter estimates under the ideal condition (di = di = 0) overlaid. There exists no difference between the two cases as far as the identification speed is concerned. In the simulation, the step disturbances, di and d 2 , were injected to the plant at k = 0. Thus, strictly speaking, at k = 0, di(k) and d 2 (fc) did not satisfy equation V Conclusions Adverse effects of deterministic disturbances in linear identification have been pointed out, and a method to remove such effects has been presented. This method works for measurable and unmeasurable disturbances which can be regarded as the outputs of free systems with known dynamics. The unmeasurable disturbance must always be removed to achieve successful identification. When the disturbance is measurable, however, it does not have to be removed if it can provide a positive contribution to identification. A constant disturbance was shown to slow down the identification speed. The best results will be obtained if one selects a DDR which removes only undesirable disturbances. In this technical brief, discrete series-parallel and parallel identification schemes for single-input, single-output systems were considered. The same principle, however, can be extended to other situations including the continuous time case and multi-input, and multi-output case. References 1 Astrom, K. J., and Eykhoff, P., "System Identification -A Survey," Automatica, Vol. 7, 1971, pp. 123-16
    • …
    corecore