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Abstract: Two criteria for choosing between different model-structures 

are proposed. Their derivation is within a natura! cross-validatory 

assessment context and is fairly assumption-free. In particular, the two 

criteria can be used for discriminating between non-nested model struc

tures and, more important, the "true" system is not required to belong to 

the considered set of models. Should the true system belong to the model 

set, the two proposed criteria will asymptotically reduce to some well

known structure selection criteria. This is believed to be a desirable 

feature of our proposals. On the other hand, it provides a nice cross

validatien interpretation of some well-known model structure selection 

rules. Also, the cross-validatien interpretation helps to choose which 

of the criteria to be used in a given application. 

The paper also has a second purpose which is somewhat decoupled from that 

mentioned above. It contains a rather extensive survey of the literature 

which may be useful in its own right. 
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1 INTRODUCTION AND REVIEW OF LITERATURE 

Let S denote the system that generated the data. We shall generally 

assume that the data are realizations of stationary ergodie processas but 

otherwise will not impose any other restrictions on s. 

Let M(9) denote a model of S, where 9 stands for the finite-dimensional 

(dim e < Cl)) vector of unknown parameters. When e spans a set of feasible 

values, say e, then M(9) describes a set of models, say M, M can (and 

will) be called a model structure. We will make some assumptions on the 

model M(9) insection 2. Here let it suffice to say that those assump

tions are fairly weak and that throughout this paper we will consider a 

general M rather than specializing the discuesion to specific model 

structures. 

Once a model structure M has been chosen, the problem of estimating the 

unknown parameter vector e has a number of well-established solutions, 

see for example Aström and Eykhoff (1971), Eykhoff (1974), Kashyap and 

Rao (1976), Goodwin and Payne (1977), Ljung and Söderström (1983), Söder

ström and Stoica (1983). 

However, an essential question is how to choose the model structure. 

It has been treated by many researchers and has received a number of 

answers. In Table 1, we present a review of the literature on the model 

structure selection problem. Needless to say, we do not claim that the 

tableis "complete". We believe, however, that it includes most of the 

key references. 

Clearly a certain familiarity with the topic is necessary in order to 

understand the various entries and comments of the table. We have to 

accept this situation since we cannot, in one single paper, give details 

on every procedure included in Table 1. For the paper, such detailed 

descriptions will not be needed since our aim is not to campare all the 

model-structure selection rules given in the table, but rather to intro

duce some new ones and to show how they are related with some selection

rules in Table 1 • 
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The procedures which belong to the first four columns of the table are 

sometimes called "subjective selection rules" [see e.g. chan et al. 

(1975)], the reason being that their application requires some subjective 

judgement (most typical, the choice of a significanee level). Such pro

cedures will not be discuseed in this paper. 

The next three columns of Table 1 contain the so-called "modern selection 

rules", the application of which does not require the choice of signifi

canee levels etc. (sometimes, they are also called "objective" but as we 

shall see their use is not completely free from subjectivity). Such 

selection rules will naturally occur in the subsequent discussions. 

Their properties will also be reviewed and extended to some degree. 

Most solutions to the problem of model structure selection are tied to 

specific parameter estimation methods. The predietien error method (PEM) 

is a typical example of an estimation method for which model structure 

selection rules have been designed. Also, for most procedures, it is 

customary to consider a number of competitive model structures, say {M
1
}, 

and to select the "right" structure by using a certain rule/criterion. 

It is generally assumed that the model sets Mi are nested and that the 

"true" system S belongs to one of these sets. 

It is clear that in practice the assumption S € Mi is unlikely to be ful

filled. Then the aim of the model structure selection rule should not be 

that of choosing a "true" structure, simply because such a structure does 

not exist. The aim should be, rather, to find the "best" model structure 

within the considered set {M.}, the "best" with respecttoa certain cri-
l. 

terion expressing the intended use of the model. To this end we may wish 

to compare non-nested structures as well. 

While the above facts appear to be widely recognized, it seems that we 

still lack a model-stroeture selection rule incorporating all the desir

able features mentioned above. In this paper we will ~ to fill this 

gap. The cross-validatory assessment, (Stone, 1974), will be the frame

werk within which we will derive our model-stroeture selection criteria. 
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An outline of this paper is as fellows. In the next sectien we state the 

problem and introduce the basic assumptions. In sectien 3 we derive a 

first cross-validatien criterion which, in sectien 4, is shown to be 

asymptotically equivalent to Akaike's criteria, provided some additional 

assumptions are made. A secend class of cross-validatien criteria is 

proposed in sectien 5, while in sectien 6 it is shown that this class 

asymptotically includes the well-known criteria of Hannan, Kashyap, 

Rissanen and Schwarz, under certain additional assumptions. Finally, 

sectien 7 contains some concluding remarks. 

2. PRELIMINARIES AND BASIC ASSUMPTIONS 

Let us consider a generio model structure Mand let M(9) be a model be

longing to M. We will assume that the estimate, say 9, of tbe unknown 

parameter vector of M(9) is obtained as 

9 = arg min V (9 ) 
eee 

1 N 
V(9) = N I e2(t,9) 

t=1 
( 2. 1) 

In (2.1) e(t,9) is the .. residual" of M(9) at time instanttandNis the 

number of data points. 

Many parameter estimation metbods currently in use are of the type (2.1), 

for example, tbe least-squares metbod (LSM), the output error method 

(OEM), tbe PEM, and- under the gaussian hypothesis- also the maximum 

likelihoed metbod (MLM). This is true indeed since residuals {e(t,9)} in 

(2.1) can be defined in many ways. Tbey can, for instance, be equation 

errors or output errors. They could also be one-step predietien errors 

or multi-step predietien errors etc. The above discuesion also implies 

that by using criteria of tbe type (2.1), we can express a number of 

possible intended uses for an estimated model. For example, tbe "qual

ity" of a simulation model, a predietien model or a model to be used for 

predictive control could be expreseed by criteria such as (2.1). 

In practice estimated roodels are quite often used for purposes such as 

these mentioned above. However, tbere are certainly intended uses of a 

model whicb cannot be expreseed by criteria of the type (2.1). For such 

cases, the theory we shall develop in this paper will be only of a limit-
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ed interest. There may indeed be little reason to use a good prediction 

model forspeetral estimation (to give only one example). However, the 

basic ideas of this paper might be useful in also approaching, in a simi

lar way, those other cases where the estimated model is to be used for 

another purpose than prediction, simulation etc. In our opinion, this, 

if possible, would be strongly recommended. The reason is simply the 

obvious (but sometimes neglected) fact that system identification should 

be done with the final aim of the model in mind. 

Some further remarks on (2.1) are in order. 

Remark 2.1 The quantities in (2.1) should normally be indexed to show 

that they correspond to the model structure M, for example eM, VM(9M), 

eM(.,SM). However, to simplify the notatien we shall omit the index M 

whenever there is no possibility of confusion. 

Remark 2.2 In (2.1) we have implicitly assumed that {e<t,e>} are scal

ars. The extension to the multivariable case is possible but the nota

tions will then be a great deal more complicated. This extension will 

• 

eventually have to be presented elsewhere. • 

Remark 2.3 The analysis that follows can be directly extended to slight

ly more general criteria than (2.1) of the form 

1 N I h(e<t,9>) 
N t=1 

with h(.) being some suitable function. Note that fora general distri

bution of the data, the ML criterion is of this type [take h(e) = 
-ln f(e), with f(e) the probability density function of e(t,9)]. How

ever, to keep the notation simple we will concentrate on the analysis of 

(2.1) and leave the extension to the more general criteria of the above 

form as a simple exercise for the reader. • 

Now, let us introduce some regularity conditions that will be assumed to 

hold true throughout the paper. 
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A1: e:(t,e) is a sufficiently smooth function of e so that its deriva

tives with respect to e exist and are finite for any e,0, where 0 is 

the compact set of feasible values. 

A2: The secend-order derivative matrix 

1:. = vee> 

is positive definite. (In particular this implies that 9 is an 

isolated minimum point of vee>]. 

A3: The residuals { e:( t,e)} and 

e:9 <t,e> ~ ~e E:(t,e> 

ll o2 
€: 99 ct,e> = -- e:Ct,e> 

oe2 

are stationary and ergodie processes for any 9~0. Moreover, we 

assume that the sample moments involving the above processas con

verga to the theoretica! moments, as N tends to infinity, at a rate 

of order 0(1/IN}. 

Assumptions A1 and A2 are fairly weak. Assumption A3 might appear rather 

technica! and in any case difficult to check in a given practical situ

ation. The ergodicity property, however, does not appear to be restric

tive. It seems to be necessary in practice, where in general we have 

access to only one realization of the stochastic process under study. 

Once ergodicity is accepted, the rate of converganee of the sample mo

ments is under rather general conditions of order 0(1/IN), see e.g. 

Bartlett (1966). However, we would like to stress that this point is not 

essential for the analysis that comes. Should, however, the rate be 

smaller than 0(1/IN), the main results of the paper will basically still 

hold; only the order of some remainder terms will be affected. 

we shall also make a general assumption on the experimental conditions 

under which the data used in (2.1) were obtained. We thus assume that 

those conditions are the same as (or, more realistic, quite similar to) 

the experimental conditions under which the model will be operating. 

This assumption is not added as a fourth condition. It will not be used 
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in the analysis. In fact, it is a general meaningful principle rather 

than just an assumption. The importance of this principle for identifi

cation from real-life data is emphasized, for example, by Ljung and Van 

Overbeek (1978). 

Turn now to the problem of model structure determination which is the 

main theme of this paper. As is well known, minimizing the values of 

v(e) obtained in different model structures is not an appropriate methad 

for structure selection. Indeed, consider for example two nested struc

tures M1 , M:z with M1 C: M:z. Then we necessarily have 

even though M1 may be a "better" structure than ~· By "M1 being a bet

ter structure than M2" we mean that on data sets other than those used 

for estimation, M1 will lead to smaller residual-sum-of-squares criteria 

more frequently than M:2 • 

A conceptually simple salution to the above dilemma is provided by what 

is called cross-checking or cross-validation. What this may mean is 

perhaps best illustrated by the following quotation from Stone (1974): 

"In its most primitive but nevertheless useful form [cross-valida

tion] consiste in the controlled or uncontrolled division of the 

data sample into two subsamples, the choice of a statistica! predic

tor, including any necessary estimation, on one subsample and then 

the assessment of its performance by measuring its predictions ag

ainst the other subsamplen. 

Some refinements of the above "primitive" form of the cross-validatory 

assessment have been developed in Stone (1974) which was the main souree 

of inspiration for our study. 

In the next sections we shall propose two cross-validatien schemata 

(which, we note in passing, can be seen as generalizations of Stone's 

scheme) for assessment criteria of the type (2.1). These two schemata 

will, in turn, lead to our model structure selection criteria. 
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3 FIRST CROSS-VALIDATION CRITERION 

Let 

I = {1,2, .•• ,N} (3.1a) 

and 

I = { ( p-1 )m+1, ••• ,pm} p = 1, ••• ,k-1 p ( 3. 1b) 

Ik = {Ck-1 )m+1, ••• ,N} 

for some positive integer m and k = [i;J. 

on N. 

For cross-validatory assessment of the model structure M, in this sectien 

we shall use the following criterion 

k 
ei = l: I e2 < t,e > 

p=1 tE.I 
p 

p 

(3.2) 

where 

e = arg min l: e2 < t,e > p = 1, ••• ,k p eee tCI-I p 

(3.3) 

Remark 3.1: It may be worth noting that for dynamic systems, in general, 

we cannot have a neat division of I into an "estimation" subsample and a 

"check" subsample. For example, generally we shall need data from I to 
p 

campute the estimation criterion in (3.3). This does not appear, how-

ever, to be a serieus drawback and we should accept this situation since 

correcting it, even if possible in principle, would complicate the anal

ysis a great deal. After all, there is a clear separation between the 

residuals used for checking, (3.2), and these used for estimation, (3.3), 

and this seems to be what is important. • 

Remark 3.2: We will assume that all the intervals {IP}~1 have the same 

length m. This assumption will simplify the notatien and also some cal

culations. However, the length of the last interval Ik will, in general, 

be larger than m (but, of course, smaller than 2m). It is not difficult 

to see that the main results derived in the following sections remain 
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valid also when this fact is recognized. More specifically, we will use 

the assumption that~I = m (for p • 1, ••• ,k) in equations (3.8) and 
p 

(5.7) below. The corresponding (intermediary) results (3.8} and (5.13), 

respectively, obtained under this assumption remain unchanged if we let 

~Ik belong to the interval (m, 2m}. We omit the straightforward cal-

culations showing this. • 

The exact evaluation of the assessment criterion ei, (3.2), even if 

clearly possible, may not be advisable since the computing time required 

will be prohibitive for many applications. In the following, we will 

derive an asymptotically valid approximation of ei which is much easier 

to compute. 

Theorem 3.1 Let assumptions A1-A3 be true. Then for k large enough we 

have 

(-1) 
Jt2m 

whe~r~e~-------------------------------------------, 
k 

e 1 ~vce> +.!_ l: wT(ê) v-1 (9)w (9) 
N2 p=1 P ee P 

= 

= V(9) + !_ tr v-1 (9) W(9) 
N2 ee 

with 

w (9) = I e: < t,e >e:e < t,e > p 1, ••• ,k 
p t I p 

k T 
wee> = I w (9) w (9) 

p=1 p p 

The above re sult holds for both "large" and "small" 

(3.4) 

(3.5a) 

(3.Sb) 

m's. 

Proof: For sufficiently large k, 9 is close to 9, (2.1), and then we 
p 

can write: 

(3.6) 

Similarly we have 
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-~~I e(t,9p)e9(t,9p) = 
p 

! I e:Ct,e>e9<t,e> + 
t6I 

p 

{v99 cê>- io~ [i t~I e(t,e>e9ct,e>] } caP-e>+ oclêP-ê12> = 

P e=e 

Since (E denotes expectation) 
1 ~ ~ ~ 1 
m I E(t,e)ea(t,e) = EE(t,e>ee(t,e) + o(~) = 

tti 
p 

(3.7) 

1N ~ ~ 1 1 1 
= [ N t~ 1 e <t,e >e:9 Ct,e > + o(;:rN)] + o(~) = o(~) (3.s> 

I 
~ 

4 1 1 it follows from (3.7) that ep- e = o(klm)· 

[ Note that for "small" m, 0 ( 1/lm) should be interpreted as 0 ( 1)]. 

Therefore we get from (3.7) the following asymptotically valid expres

sion for (9 -e): 
p 

e - ê = v-1 cê > ~ I 
P ee N tEI 

p 
where we have used that 

Finally, from (3.6} and (3.9) we have that 

1 1 k 
- c =- I 
N I N p=1 

I 
ter 

p 

= c + o(-1-) 
1 k2m 

and the proof is finished. 

(3.9} 

(3.10) 

• 
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The (approximate) cross-validatien criterion c1m will apparently be much 

easier to compute than Crm· [Note that for convenience of the following 

discuesion we emphasize by notatien the dependenee of CI and c
1 

on m]. 

The calculation of c
1
m is particularly simple when the minimization in 

(2.1) is performed by using a Newton-Raphson algo~ithm (and indeed this 
A ~ k 

may be the case quite often). Then both vëA<S> and {wp(9)}p=
1 

can be 

obtained from the last iteration of the minimization algorithm without 
- - k 

any additional calculations. Once VëA (S) and {wp(9)}p=1 are given we 

can use one of the two expressions given in (3.5a) to compute c
1
m. Note 

that depending on the values of m, N and dim e one of these two expres

sions may be computationally more efficient than the other. The number 

of arithmetic operations required to evaluate either of these expressions 

can easily be counted. We do not insiet on this aspect since it seems 

minor. 

We now state our first model structure selection rule. 

First cross-validatien model structure selection rule: Choose the model 

structure which leads to the smallest value of c
1
m, where c

1
m is defined 

by (3.5). • 

The above selection procedure depende on m, and the choice of this para

meter should thus be discussed. We cannot give precise rules on how to 

choose m. However, the cross-validatien interpretation of the selection 

criterion may, at least, give some ideas about the value m should have in 

a particular application. Indeed, we can expect that the model (struc

ture) which wil! minimize c1m wil! asymptotically minimize Cim as wel! 

(see Sectien 5 fora discuesion on this point). Then given the obvious 

interpretation of Cim' it would appear that the value of m should be 

chosen so as to indicate, on how many future sampling points we intend to 

use our model which is estimated from N data points. More specifically, 
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suppose we wish to use the estimated model at some n (say) future time 

instants. 

m 
N-m 

Then we may choose m such that 

n 
"" N 

(3.11) 

This choice will aasure the desired ratio between the "check" and the 

"estimation" sample lengths. 

Remark 3.3: For convenience of the subsequent discuesion we introduce 

the following terminology. When n << N we say that the estimated model 

is a "short-term" model, or perhaps, a more suggestive description, a 

"short term operating" model [a "one-step" model if n = 1], and we call 

it a "long-term" model if n >> N. This wording might be somewhat uncon-

ventional but should not be confusing. • 

Note that since m/(N-m) must be small enough for c1m to be a good approx

imation of Cim' it follows from (3.11) that c 1m can be used only for 

"small" n/N ratios (in such cases (3.11) implies m"" n). In the termin

ology of Remark 3.3 we can therefore say that c1m can be used to select a 

good "short-term" model structure. 

we should also remark that the remainder term in (3.4) depends on m. The 

smaller m is, the better the approximation order seems to be. For m = 1 

we apparently get the best approximation order (then the difference 

(l c -c
1 

) is 0(1JN2) which is quite small indeed). The choice m = 1 is 
N Im m 

advocated by Stone (1974) on heuristical grounds (cf. also the discus-

sion onStone's paper). As a matter of fact, Stone used exact cross

validatien criteria so he could not invoke in favour to the "one-at-a

time omission schema" the impravement in approximation degree that, as 

mentioned above, may result for m = 1. 

Even if the difference between the exact cross-validatien criterion c
1
m 

and its asymptotically valid approximation c1m may increase when m in

creases we, depending on the type of application, may wish to consider 

also values m > 1. This point will be further discussed in the next 

sections. 



13 

4. ASYMPTOTIC EQUIVALENCE WITH AKAIKE'S CRITERIA 

The cross-validation criterion c1m introduced in the previous section 

appears to have a number of desirable features. 

First, for sufficiently large k, c1m has a nice cross-validation inter

pretation. Second, it can be shown that c1m is invariant to parameter 

scale changes. [A discuesion on the importance of this point may be 

found, for example, in Rissanen (1976)]. Third, and more important, in 

order to use c1m for model structure selection we need to assume neither 

that the structures {M
1

} under consideration are nested, nor that S&M1 
forsome i. Only the fairly weak conditions A1-A3 need to be true. 

In the following we will show that if certain additional assumptions are 

introduced then c
1
m can be expected to asymptotically behave like the 

well-known and frequently used Akaike's criteria (Akaike, 1969, 1973, 

1974, 1976, 1981). This is also considered to be a desirable feature of 

our first cross-validation criterion c
1
m. 

The equivalence of the choice of model structure by cross-validation and 

Akaike's criteria is not unexpected. Akaike's selection rules can be 

interpreted as cross-validatory prediction assessments; cf., e.g., Söder-

ström (1977). In fact, the Akaike Information Criterion (AIC) was shown 

to be asymptotically equal under certain conditions to ln ~ c 
1

, Stone 
N

1 
I 

asymptotic equality of ln N ci
1 

and AIC (1977). Here we shall prove the 
1 

as well as that of N ci1 and Akaike's FPE (Final Predietien Error) cri-

terion under more general conditions than Stone's. In particular we do 

not assume that S necessarily belengs to M. We shall also give the order 
1 1 

of the difference between N c11 (ln N c11 > and the FPE criterion (AIC). 
1 

between - C Furthermore, we shall consider the asymptotic equivalence 
1 

or ln N c
1

m and Akaike's criteria also for m > 1. 
N Im 

It is shown in Ljung and Caines (1979) that under weak conditions (im

plied by our A1-A3), as N tends to infinity 
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e + 9* = arg min &2(t,9) (wp 1) 
e,e 

J ê-e*l = o(-,-) 
IN 

Introduce the following assumption 

s 1 : E e: < t, e * > e: ee < t, e * > = o 

(4.1a) 

(4.1b) 

The above condition is more general than that requiring SIM. For ex-

ample, in the case of least-squares model structures (for which e:(t,9) 

linear in 9) B1 is trivially satisfied under general conditions since 

such structures we have E:ee<t,9) = 0 any e. Furthermore, even if we 

we re to assume that S~M so that B1 follow, we need not require that 

e:(t,9*) is white noise, which seems to be the usual condition imposed 

is 

for 

in 

other analyses of Akaike's criteria. Think, for instance, of an OE model 

for which B1 fellows once we accept that SIM, but {e:(t,9*)j may well be a 

correlated process. 

It is now possible to state the result on the asymptotic equivalence 
1 between N c

11 
and Akaike's AIC and FPE criteria which for the problem 

under study are given by [see, e.g., Akaike (1974, 1976, 1981)]: 

~ 2 
AIC = ln V(9) + N dim 9 

FPE "" V(9) 
N + dim e 
N-dim9 

(4.2) 

(4.3) 

Theerem 4.1 Let assumptions A1-A3 and B1 be true. Assume that either 

e:(t,8*) and e:
9
(t,8*) are gaussian distributed or that they are general 

linear random processes. Then, for sufficiently large N it holds that 

1 1 
ln N c11 = AIC + 0( 312) 

N 

(4.4) 

~ CI 1 = FPE + 0( (4.5) 
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Proof: From Theorem 3.1 we have that (for large N) 

1 ~ 4 ~ 1 A 1 

N 
c

11 
= V(9) +- tr v-l (9). -N W(9) + 0(-) 

N ee N2 
(4.6a) 

where 

wee> (4.6b) 

Now, under the assumptions made, we asymptotically have 

~ 1 T 
v99 ce> = v99 ce*> +oe-)= 2E[e:9ct,e*> e:9ct,e*> + 

IN 

+ e:<t,e*> e: 99 ct,e*>] + o(-1-) = 2Ee:9ct,e*> e:~(t,S*> + o(-1-) 
IN IN 

and 

~ wcê> = E e:2ct,S*> e:9ct,e*> e:~<t,e*> + o(-1-) = 
IN 

= [E e:2<t,e*>][Ee:9(t,e*> e::<t,e*>] + o(-1-) = 
IN 

~ T 1 
= v ce > .Ee:9 c t,e* >e:9 < t,e*> + o(-) 

IN 

·(4.7) 

(4.8) 

In establishing the second equality in (4.8) we have assumed that the 

well-known formula 

(4.9} 

can be applied to the random variables 

The formula (4.9) is known to hold if {xi} i=1, ••• 4 are either gaussian 

distributed or general linear random variables (see Bartlett (1966) for 

example}. By using (4.9) the second equality in (4.8) easily follows 

after noticing that (4.1a) implies 

( 4. 10) 
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Introducing {4.7) and {4.8) in (4.6) we obtain the following asymptotic-
1 

ally valid expression for N c
11 

1 - 2 1 N c11 =vee>[ 1 + N dim e] + o( 312) (4.11) 
N 

The assertions of the theerem readily fellow from (4.11). Indeed we 

have 

1 
ln N c11 = ln V(9) + ln [ 1 + i dim a ] + o ( ~ 

12
) = 

N 

2 1 1 
= 1n vee> + N dim a + o(-) + o( 312 ) = 

N2 N 

AIC + 0( ~/2 ) 
N 

= (4.12) 

which shows (4.4). To prove (4.5) note that 

FPE =vee> [1 + 2 dim a ] = vcê>[1 + 2 dim e (1 +dim e )] = 
N-dim9 N N-dim9 

[ 2 . ] (1) 1 (1 ) = V(9) 1 + N dJ.In 9 + 0 ~ = N C11 + 0 N3/2 (4. 13) 

With this observation the proof is concluded. • 

As a consequence of the above theerem we can expect that for N large 

enough both AIC and FPE will select the model structure that minimizes 

the cross-validatien criterion c
11

• For this to hold, weneed to assume 

neither that the compared structures are nested nor that the system is 

necessarily included in the structure set under consideration. However, 

we need assumption B1 to hold. Despite this last remark, the above dis

cuesion appears to offer further support to the by now widespread opinion 

that Akaike's criteria will select model structures with a rather streng 

intuitive appeal in quite a variety of practical situations. For the 

present case, given the interpretation of c
11

, we can say that under mild 

conditions, the models selected by AIC or FPE will be good one-step mod

els. 

On the other hand, the models selected by using c
11 

will possess the 

aforementioned feature in more general situations; so if that feature is 
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indeed desirable, then c 11 might be preferred to AIC or FPE. 

Now, let us consider the possible equivalence between ~ c
1
m and Akaike's 

criteria for m > 1 (eventually m + w). It will turn out that AIC or FPE 
1 

asymptotically behave,like N c
1

m also for m > 1 provided the following 

additional assumption holds: 

B2 {e<t,S*>} is white noise. 

This assumption is quite strong. It is essentially equivalent to requir

ing that SEM and that {eCt,O)} are one-step ahead predietien errors. 

Also note that for causal models B2 implies B1. 

For m > 1 and k large enough we have, cf. (3.5): 

with 

1 ==-
k 

k 
I [ 1. I m 

p=1 tai 
p 

- - 1 
e<t,e>e9ct,e>][- I 

m BEI 
p 

(4. 14) 

- T • 
e(s,e>e0<s,e>] 

(4.15) 
1 -

It fellows from (3.8) that ---- W(O) is 
m2k 

o(~) [for "small" m o(~) should 

be interpreted as 0(1)]. Hence the second term in (4.14) is 0(1/N) also 

for m > 1 (possibly m very large). However, whether or not it is asymp
- dim e 

totically equal to 2V(9) 
N 

seems to be a more technica! question 

than in the case m = 1. We can, however, preeeed heuristically. Thus we 

can expect that for large k 

_1 W(O*) = 1. I 
mk m 

UI 
p 

I 
se I 

p 

+ o(-1-) = v<ê >EEe <t,e*>e~< t,e*> + o(-1-) 
Ik Ik 

(4.16) 

The last equality in (4.16) fellows from our assumption that e(t,S*) is a 

white process (then, in particular, Ee(t,9*)e9(s,e*) = o fort) s), 

after application of (4.9). 



18 

Invoking (4.1) we can now write 

.{v<ê>[Ee:9 (t,e*>E~(t,e*>] + o(-1-)} 
Ik 

~ 2 1 
= vee>[ 1 + N dim e] + o( 312) 

mk 
( 4. 17) 

The above relation, together with (4. 11)-(4.13) shows that if the assump

tions of theorem 4.1 hold, and if B2 holds, then for m) 1 

(4.18a) 

ln N
1 c1 = AIC + 0( 

1
312) 

m mk 
(4.18b) 

...., 
Thus it follows that for two structures, say M and M, satisfying B2 we 

can, for N large enough, expect that 

- FPE ,... ( 4. 19) 
M 

and similarly for ln ~ c
1

m and AIC. Now, assume that (at least) M does 

not satisfy B2. For such an under-parametrized model structure (4.18) 

does not necessarily hold. However, since in such a case V (9 )-V (9 ) = 
i i 'M 'M 

0(1) is the dominant term for both sides of (4.19) we can still conclude 

that (4.19) holds asymptotically. Hence we have established the asymp-
1 

totic equivalence between N c
1
m and Akaike's criteria also for the case 

m > 1. Since we used the .quite restrictive assumption B2 in showing this 

equivalence, the cross-validation interpretation of AIC and FPE given by 

the above result is more of theoretica! than practical interest. The 

interpretation is that under B2 the models selected by AIC or FPE will 

not only be "good one-step models" [see the discussion following Theorem 

4.1] but also "good short-term models" (recall that the length mof the 

"check" subsample must be much smaller than N-m, the length of the "esti

mation" subsample, for the above result to hold). 
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Needless to say the models selected by minimizing c
1
m can be interpreted 

as '' good short-term models" ( in the sense of minimizing c ) under (much) 
Im 

more general conditions. The criterion c
1
m might thus be preferable in 

some applications to FPE or AIC even if it is computationally more com

plex. 

Now, let us assume for a moment that the assumption S M holds. Further

more, let M be the smallest model set containing s. The true structure 

therefore is M. As is well known, the structure minimizing AIC or FPE is 

nota consistent estimate of M [see, e.g. Shibata (1976), Söderström 

(1977), Kashyap (1980)]. In particular there exists a non-zero probabi

lity, even asymptotically, to over-estimate the true structure. In view 

of the asymptotic equivalence shown above between c1mand AIC or FPE, the 

same will be true for c1m. However, this should not be seen as a serious 

drawback. After all, c1m (like Akaike's criteria) was not designed to 

provide a consistent estimate of the "true" structure, but rather a "good 

short-term model structure"; and the two structures just mentioned do not 

necessarily coincide (!); see, e.g. Stoica and Söderström (1982). It is 

rather intuitive that the attempt to select a good short-term model 

structure may lead to overestimating the true structure. The overfitting 

that may result when using AIC, FPE or c1m on simulated data should be 

understood in the above light. 

With the previous discuesion in mind, we may suspect that the simple fact 

that the check subsample is much shorter than the estimation subsample 

may be the reason for the inconsistency of the selection rule based on 

c
1
m. The consistency might appear for selection rules designed to select 

"good long-term model structures", therefore for cross-validatien rules 

in which the check subsample is (much) larger than the estimation one. 

This observation leads us to our second cross-validatien criterion which 

we present in the next section. In section 6 we show that the conjecture 

made above is valid. 
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5. SECOND CROSS-VALIDATION CRITERION 

We now consider the following criterion for cross-validatory assessment 

of model structure M 
k 

CII = I I e:2 < t ,e > (5.1) 
p=1 tfi-I 

p 
p 

where 

e = arg min I e:2 <t,e> p = 1, ••• ,k (5.2) 
p 

9E8 t I 
p 

All quantities appearing in (5.1) and (5.2) have been previously defined 

[thus I and {IP}~1 are given by (3.1)]. The lengthof the check sub

sample, N-m, is now (much) larger than the estimation subsample length, 

m. Otherwise c
1

I is quite similar to ei and, in fact, both criteria 

could have been presented in a unified framework. However, as we shall 

see, the analysis of c
1 

could not be repeated here. The asymptotic anal

ysis of c
11 

needs more detailed consideration. 

In this section our principal concern will be to obtain an asymptotically 

valid approximation of CII that will be (much) easier to compute than the 

exact cross-validatien criterion [C5.1), (5.2)]. 

Theorem 5. 1 Let assumptions A 1-A3 be true. Then for m and k large 

enough we have the relation: 

( k~1 )N CII = C2 + o( . 
1 

3/2 ) 
nu.n(N,m ) 

where 
~-------------------------------------, 

and where w (9) and W(9) are defined in (3.5b). 
p 

(5. 3a) 

(5.3b) 

Proof: Fora sufficiently large m, 9 is "close" to 9, (2.1), and then 
p 

we can write 

1 
(k-1)N CII 

1 k 
= (k-1 }N L 

p=1 
I 

UI-I 
p 



21 

(5.4) 

The evaluation of the first term T1 in (5.4) is readily achieved. 

1 
k 

Tl = I 2 e2 (t,9) = 
( k-1 )N 

p=1 tti-I (5. 5) 
p 

1 
k N ~ 

= 2 [ I e2(t,9) - I e2 (t,e>] = V(9) 
(k-1 )N 

p=1 t=1 tEl p 

To evaluate the second and third term, T2 

ally valid expression for the difference 

can write [cf. also (5.2)] 

~nd~T3 , weneed an asymptotic

( e -e) • For m large enough we 
p 

2 ~ ~ 2 
o =; I e<t,ap>e9 ct,ap> =; 2 e<t,e> e6ct,e> + 

+ { ::Ir.! ï E2 (t,e) ]I I t;:p -9) + o<lêp-ê 12) 
o92 m tEI ~ p 

p 9=9 

Arguments similar to (3.8) now give 

and 

e:2 (t,e >] = v69 (9 > + o(-1-) 
-lm 

~ 2 e:(t,e>e:9 Ct,e> = o(-1-) 
t~I -lm 

p 
We therefore get from (5.6)-(5.8) that 

and 

lA ., 1 e -e = o(-) 
p -lm 

eP -e = -vë~<ê> ! Jr e:(t,9)e9 (t,9) +oe (êP-ê (2> 
p 

(5.6) 

( 5. 7) 

(5.8) 

(5.9) 

(5. 10) 

It is now possible to evaluate the magnitude of T2 • Since, as we shall 

see, this is a higher order term we do not need an explicit expression 

for it. 
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2 
k T ~ 

T2 == I I e(t,e> e9ct,e>] ceP -e > = (k-1)N 
p=1 tEI-l p 

2 
k ~ T ~ 

o(-1-) = I [- I e(t,e>e9 ct,e>] = (k-1 )N 
p=1 t~I lm p 

2m k 
[.! I ~ T ~ 

o(-1-) =- l: e:(t,e>e9ct,e>] = (k-1)N p=1 m tEl lm 
p 

mk o( 1) = o( 1) ( 5. 11) = (k-1 )N m N 

We now proceed to evaluate the third term T3 • First we note that for k 

large enough 

.! I 2[e9 ct,~>e:ct,~) + e(t,i>e99 ct,i>] = 
N t4!!I-I 

p 
~ 1 

= v99 ce> + o(k) (5.12) 

It follows from (5.10), (5.12) and the definition of T3 that 
2 k ~ 1 • 1 ~ 

T3 = k-1 tr l: [v99 ce> + o('k)][vëà<e>.; w ce>. 
p=1 p 

; w;cê> Vëê<S> + o( ~12)] = 
m 

== 
2 

tr vëê ce >wee> + o ( 1 
312 ) = 

zn2 ( k-1) min (N,m ) 

= 2k tr v-1 cê >wcê > + o( 1 
3 2 

) 
N2 ee min(N,m I ) 

(5.13) 

The last equality in (5.13) follows aftersome straightforward calcula

tions. The assertion of the theorem now follows from (5.4), (5.5), 

( 5 • 11 } and ( 5 • 13 ) • • 

_The expressions for the (approximate) cross-validation critera c1 and c2 
are strikingly similar. The remarks made in Section 3 on the calculation 

of c1 clearly apply to C2 as well; they will not be repeated here. 



23 

Despite this similiarity there exists, in fact, an important difference 

between c1 and c2 • The second term in c
1
m is 0(1/N) for any m [see, for 

example, the discuesion following (4.15)]. In (5.3b) the second term is 

0(1/m). This can easily beseen for instanee from (5.8}, (5.13). Since 

k is supposed to tend to infinity (as N tends to infinity) the second 

term in c2 will take (much) larger values than the corresponding term of 

cl. 

The assumption that k is "large enough" used in deriving c2 is perhaps 

worth discussing. It cannot be removed without affecting the expression 

(5. 3b) of ~. Indeed for "smal!" k, T3 and T2 are of the same order of 

magnitude. Hence T2 can no longer be neglected; but this could be man

aged. More serieus is the fact that for "smal!" k the second term in 

(5.12) is 0(1) and should therefore betaken into account. This, in 

turn, wil! camplicate the expression of T3 and hence of c2 • 

The interpretation of c2 as an approximate cross-validation criterion may 

help in choosing the value of k and m to be used in a given application. 

For example, let N = 1000 and suppose we intend to use our model deter

mined from the 1000 data points at hand for other (say) 9000 future time 

instants. Then we may take k = 10 and m = 100. For this choice the 

check sample length-to-estimation sample length ratio, (N-m)/m, takes the 

"desired" value 9000/1000. 

we may also choose k and m so as to "minimize" the magnitude of the re

mainder term in (5.3a). For given N this is clearly achieved for 

(5.14) 

Further details on the choice of k and m can be found in the next sec-

tion. 

we now state the model selection rule basedon c2 • 

Second cross-validation model structure selection rule: Choose the model 

structure which leads to the smallest value of c2 , where c2 is defined by 

(5.3b). • 
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we may remark that a sufficient condition asymptotically guaranteeing 

that bath C2 and c
11 

are minimized by the same model structure is that 

for any two different structures in the set under consideration, say M 

and M, the differences c2M - c2M and CIIM - CIIM have for large N the 

same sign. Since C2 is an asymptotically valid approximation of 

(k~ 1 )N CII' (5.3), the above condition appears to he fairly weak. For 

example, it certainly holds if the order of magnitude of CzM - C2M is 

greater than 

general, lez M 
cf. (5.3a)ï and we may expect that, in 

6 ASYMPTOTIC EQUIVALENCE WITH SOME CONSISTENT STRUCTURE SELECTION 

CRITERIA 

Let us assume that condition B2 introduced in section 4 holds true. For 

an interpretation of B2 see the discuesion preceeding (4.14). Then, 

parallelling the calculations in (4.14)-{4.17) we can write 

·{vcê>EEa<t,e*>e~(t,e*> + o(-1-)} + o( 1 
312

) == 
Ik min(N,m ) 

[ + mk2 dim a] mk3/2) ( 1 ) = v<e > 1 + o( + o 312 = 
N2 N2 min(N,m ) 

= v ca > [ 1 + ~ dim a] + o( ~ 
12 112 ) 

m.min(k ,m ) 
(6.1) 

which implies 

ln (k-1 )N CII 
1 = GAIC + 0( 1 

) 
. (k1/2 1/2) m.nu.n ,m 

(6.2) 

where 
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GAIC 
kN 

= ln vee> + ti dim e (6.3) 

and where we stressed by notation the dependenee of k on N. 

The conclusion is that under B2 the model selection rules based on c
11 

(or C2) and GAIC (Generalized AIC) (6.3), will be asymptotically equiv

alent [cf. also the discuesion immediately following (4.19)). 

This equivalence is interesting since in the last years there has been a 

considerable interest in model structure selection criteria of the form 

(6.3). Kashyap (1977,1982) and Schwarz (1978) have obtained such cri

teria with 

k == ln N (6.4) 
N 

within a Bayesian context. Rissanen (1978) arrived at the same choice of 

kN, (6.4), by using the "shortest data description" principle. 

Hannan (1980, 1981) has considered criteria of the form (6.3) with a 

generalk (>0). Assuming that B2 holds and that 
N k 

N 
~+= N+O asN+= {6.5) 

Hannan proved that for ARMA models the structure minimizing GAIC is a 

consistent estimate of the true structure ~s (in the sense that when N 

tends to infinity, the probability of selecting a wrong structure by 

minimizing GAIC goes to zero). 

Remark 6.1 Note that in Theorem 5.1 the same condition (6.5) was im-

posedon k. In the following we shall assume that (6.5) holds true. • 

Hannan also considered the problem of choosing ~ so as to decrease the 

risk of underfitting {which is clearly more serious than overfitting). 

Then ~ should increase with N as slowly as possible. A smallest in

creasing rate that still preserves the consistency property was shown to 

be, Hannan (1980, 1981), 

k = c ln ln N 
N 

c > 2 (6.6) 

Consistency considerations for criteria of the form (6.3) can also be 

found in Kashyap (1977), Rissanen (1979, 1980), And~l et al. (1981) etc. 
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What can be learned from the asymptotic equivalence between c2 and GAIC 

shown above On the one hand, the fact that (under B2) our second selec-

tion rule asymptotically encompasses a well-established model structure 

testing procedure (designed to work under B2) should be viewed as a de

sirable feature of our proposal. On the other hand, the shown equiva

lence gives a nice cross-validation interpretation to the selection rule 

based on GAIC. This interpretation may give ideas for choosing kN. It 

also suggests that the selection rule based on GAIC, which was mainly 

used in ARMA model identification, could be applied to other model struc

tures as well. Under B2, the structure selected will be asymptotically 

optimal in the sense of minimizing the cross-validation criterion c
11

• 

Furthermore, it appears that the consistency properties of the rule will 

also be preserved for more general model structures. As a matter of 

fact, we show below that a stronger consistency property than that usual

ly stated seems to hold for the model structure estimated by minimizing 

GAIC. In the rest of this section we shall relax the assumption that s 
belongs to the considered model set. 

* Let e_ be the parameter vector of the model M(9_) given by (4.1a). Let 
M M 

M be a model structure in the class of model structures under considera-

tion, which is such that 

E E2 (t,9M*) < E E2 (t,9~ 
M M M 

(6.7) 

-for any M in the class. Furthermore, let M be the "smallest" structure 

with the above property (i.e. if forsome M we have equality in (6.7) 

then dim 9 M < dim 9 ) • 
M 

In the following we outline a proof of the fact that, under weak condi-

tions on the class of structures in question (to be specified below), the 

structure m!nimizing GAIC asymptotically is M. [This outline may eventu

ally constitute the basisfora more formal proof]. 

Remark 6.2 Note that when the assumption B2 is in force, the above as

sertion states nothing more than the well-known consistency property of 

the selection rule based on GAIC. However, as already mentioned, we 

shall not use such an assumption. • 
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First consider a model structure M CM. 

GAIC_ - GAICM = ln[V_(ê_)/VM(êM)] 
M M M 

We have 
kN 

+ N <dim a - dim eM > 
M 

Since M M the first term in (6.8) is positive 
(6.8) 

~ -
ln[v_(9_)/VM(9M)] > 0 

M M 

Moreover it must be of order 0(1). Then for N large enough so that the 

second term in (6.8) can be neglected, we have that 

GAIC > GAIC M 
M 

"" 

(6.9) 

Consider now a model structure M:;) M. 

say g(•), such that M(gC9M>) reduces 

continuous]. This, in turn, implies 

Since MC M there exists a function, 

to M{SM) [we assume that g(•) is 

that 9* = g(S*), under some weak ,..,. M 
M 

assumptions. Indeed, 

E e2 (t,g(9~)) = E e:~( t,9~) < min E e:2 <t,e > (6.10) 
"" 

e • e 
"" ,... 

M M M ,... 
"" M M 

where the inequality follows from (6.7). To conclude from (6.10) that 

9* = 
"" M 

g(S~) we need to assume that the asymptotic loss function 

E e: 2 <t,e > ,.., "" 
associated with M has a unique (global) minimum in e 

"' M M M 
We shall make this assumption. Note that it is related to our basic 

assumption A2. Indeed, if A2 holds for large N, then e~ = g(9~) is an 
M 

isolated (global) minimum and thus a unique minimum in an appropriately 

chosen {vicinity) set e,... We may remark that relaxation of the above 
M 

assumption appears possible but that would make the analysis more tech-

nical (see, e.g., Rissanen (1979) fora discuesion relevant to ARMA-rood

els). 

According to the above discuesion a,... will, under the assumptions made, 
M 

converge to g(9~), as N tends to infinity. Then it follows from (4.1) 

that for a sufficiently large N we have 



= o(-,-) 
tN 

Also, we can write 

~ ~ 

VM (6M) = v . .J g(9M)) = 
M 
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V (6 ) + ..... 
M M 

which together with (6.11) implies that 

Therefore we have 

GAIC,... - GAICM = 0( ~) + ~ (dim 9,.., - dim 6M] 
M M 

( 6. 11) 

(6.12) 

(6. 13) 

(6.14) 

For N large enough the first term in (6.14) can be neglected and the 

second is positive, hence 

GAIC > GAIC 
""' M 
M 

(6.15) 

From (6.9) and (6.15) we conclude that if the class of model structures 

in question is such that for any M <i> with dim e_ < dim e 
M M 

(dim e < dim e ) we have MC M (M:::>M) then the model structure selected M ,... 
M 

by minimizing GAIC will asymptotically be M. Neither the structures M's 

nor M's need to be nested. In the cases where we campare nested model 

structures (as often happens in order testing problems) then it readily 

follows from the above analysis that the curve GAIC is unimodal, at least 

for largeN (this was empirically noticed by Stoica (1979)). 

The above "consistency" property of the selection rule based on GAIC is 
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appealing. However, since it refers to a~ymptotic models M(9~) we feel 

that for some applications the GAIC procedure may be less attractive than 

the structure selection rule basedon c2 • Furthermore, as already ex

plained, for the last rule the choice of kN could be tailored to a given 

application and made on somewhat more precise grounds. 

7 CONCLUDING REMARKS 

The two cross-validation criteria c1 and c2 proposed in this paper are 

believed to be natura! tools for selecting the model structure in those 

applications of system identification where the parameter estimation 

problem can be formulated as in (2.1). Under fairly general conditions 

they will select an optima! structure with respect to a cross-validatory 

assessment criterion. Furthermore, their cross-validation interpretation 

gives them an intuitive appeal and makes it possible to tailor them to 

specific applications by appropriately choosing the criterion parameter 

k(or m) that is at the user's disposal. 

Numerical experience with the structure selection cross-validation cri

teria introduced hereis reported in Van Beek (1985). It is shown there, 

by means of extensive Monte-Carlo simulations, that the finite sample 

behaviour of c1 and c2 is close to what is predicted by the asymptotic 

theory developed in this paper. 

It is perhaps worth remarking that the cross-validatory assessment sche

mata used in this paper are only two of a quite large number of possible 

schemata. Other assessment schemata may exist, leading to model struc

ture selection criteria with interesting features. We were, however, 

unable to find other "interesting" cross-validation criteria besides 

those presented. 

To conclude, the cross-validatory assessment is an appealing device for 

model (structure) selection and we hope that this informal paper will 

stimulate the interest in investigating further possibilities for using 

this simple but useful concept in system identification and related 

fields. 
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ever the parametrization under consider-

ation is ill-conditioned. A relatively 

simple algorithm for choosing the "best" 

linear model for vector processes is 

proposed 

Saga ra et al x x x The order selection rules proposed are 

( 1982) related to the instrumental variable 

estimation metbod and are implemented in a 

computationally efficient way 

Sak ai (1981) x x The results of Shibata (1976) are extended 

to multivariable AR models 

Schwarz ( 1979) x x A consistent structure selection rule is 

derived within a Bayesian context 

Shibata (1976) x The asymptotic distributton of the order 

of an autoregression, selected by using 

the minimum AIC procedure is estahlished 



Reference A.c. 

Shibata ( 1980 l x 

Shibata ( 1983) x 

Shibata ( 1984) x 

I I I I I 

G.A.C. a.c. o. 

x 

x 

I I 

x 

x 

Remarks 

A eertsin asymptotic optimality of the AR 

models selected by usinq Akaike's criteria 

is shown 

The contraversial problem of choosinq the 

factor a weiqhtinq the model dimension in a 

qeneralized AIC is discuseed in the context 

of AR order estimation. It is shown that 

the choice a=2 correspondinq to the AIC 

procedure is asymptotically optimal (in the 

sense of minimizinq the one-step predietien 

error ) provided the unknown optimal order 

is "large enou9fl" ( see also Shibata 

(1980)), When this is not the case, it is 

shown that neither AIC nor GAIC with a 

sequence a increasing without bound as the 

number of data points tends to infinity are 

necessarily optimal in terms of the mean 

squared one-step predietien error1 moreover 

a (numerical) minimax procedure for 

choosing a is outlined 

An approximation is qiven for the mean

squared (prediction)-error in the linear 

regression case, if the model order is ob

tained by a qeneralized final prediction 

error metbod FPE • Based on this, an ex

pression is given for the approximate 



Reference F.T. R.C.T. R.T. P.z.T. A.c. G.A.C. a.c. o. N.A. 

Shibata (1984) 

cont. 

Söderström x x 
(1975) 

Söderström x x x x x x x 
( 1977) 

Söderström x 
( 1981) 

Söderström x x x x x x 
( 1983} 

Stoica (1977) x x x 

Stoica (1978) x x 

Remarks 

efficiency of the method. This expression 

is used for proposing a procedure for the 

choice of the weighting factor a. Also a 

further generalization of the (FPE J <X-

criterion is proposed 

A systematic procedure for performing pole-

zero cancellation tests is proposed 

survey paper oontaining an analytical com-

parison of sorne methods commonly used for 

model structure select ion. Some interesting 

( asymptotic} equivalences are estahlished. 

The residual checking and the rank tests 

are only briefly covered 

comments on Bohlin (1978). It is shown that 

Bohlin's order selection rule can be inter-

preted as a modified F-test 

A tutorlal paper briefly dealing with most 

of the model structure selection procedures 

currently in use 

Sorne whiteness tests are compared 

A stmple way for computing the significanee 

levels needed by the order selection pro-

eedure of Chow ( 1972) is propoeed 

U1 
0 



Remarks 

Reference F.T. a.c . .:r. R.T. P.z.T. A.c. G.A.C. a.c. o. N.A. 

Stoica (1979) x x x x x u se of 5 structure testi09 procedures 

for selecting the order of an AR process is 

discuseed and numerically illustrated 

Stoica (1981a) x x A significanee test on the determinant of 

a aovarianee matrix is introduced and an 

application to testing the orders of ARMA 

models is presented 

Stoica { 198 1b) x Theoretica! justification of a rank test 

used for estimating the orders of ARMA 

processes is presented 

Stoica ( 1983) x The rank properties of the aovarianee 

matrix of a multivariable ARMA process are 

investigated and soma implications for 

testing the orders of time-series models 

are discussed 

Stoica (1984) x Camments on Guidorzi et al (1982). It is 

shown tbat the Guidorzi's structural 

identification procedure should be used 

only for least-squares models 

Stone { 1977a) x x Asymptotic equivalence between the AIC and 

a cross-validatien criterion is shown 



Remarke 

Reference F.T. R.C.T. R.T. P.z.T. A.C. G.A.C, B.c .. o. N.A. 

Stone ( 1977b) x The aaymptotic propertiee (consistency and 

efficiency) of the "one-item-out• cross-

validatory aseesament scheme of Stone 

(1974) are analysed mainly in the context 

of some particular applications 

Stone (1979) x x A subtle theoretica! comperison of Akaike's 

and Schwarz's criteria. The idea of in-

creasing the number of model parameters as 

the data number tends to infinity is brief-

ly discueeed 

Stone (1982) x x x A general model selection rule of the form 

min{-log(max likelihood) + (complexityl} 

is considered 

Tong (1978) x x The asymptotic distributton of the esti-

mated ooefficiente of AR models when the 

order is also estimated ( for example, by 

usinq AIC) ia derived 

Tong I 1979) x x x Thsoretical and numerical comparisons 

between the locally equivalent criteria AIC 

and Parzen's CAT 

Torrez ( 1983) x x x The problem of estimatinq the order of a 

noiey narrowband autoregressive process is 

discussed. A procedure essentially based on 

testinq the decrease of residual varianee 

I I I 
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Torrez (1983) 

cont. 

Tse and x 
We inert (1975) 

Unbehauen and x x x x 
Gohring (1974) 

van den Boom x x x x 
and van den 

Enden ( 1974) 

Van den Boom x x x x x x x 
{1982) 

Van Eek (1980) x x x 

Van OVerbeek x x 
and Ljunq 

{1982) 

N.A. 

x 

x 

x 

x 

x 

x 

Remarke 

as the model order is increased, is numer-

ically investigated. Alternative proce-

dures basedon Akaike's AIC and FPE 

criteria are briefly discussed. 

Rank tests on the output covariance matrix 

are used to select the structural indices 

of a multivariable linear system 

Survey paper. Numerical comparisons of 7 

order testing procedures 

Survey paper • Critical evalustion of 5 

order testing criteria 

Contains a detailed discussion of many 

procedures for model order selection. AIC 

and generalized AIC procedures are only 

briefly reviewed 

Numerical evalustion of some typical order 

determination methode 

use of overlapping model structures to 

repreaent a multivariable state-space sys-

tem of given order is emphasized. A sol-

ution to the problem of choosing a well-

conditioned model structure is proposed 

(.)'1 
w 



Remarks 

Reference F.T. R.C.T. R.T. P.z.T. A.c. G.A.C. s.c. o. N.A. 

Wellstead x x An instromental product moment test for 

(1978) model order estimation is described 

Wellstead and x x The model order testing procedure of 

Rojas (1982) Wellstead (1978) is extended to cover more 

general model structures and a computation-

ally efficient implementation scheme (in 

the spirit of Sagara et al (1982)) is 

briefly discuseed 

Wertz et al x x x Saveral procedures for selecting a "best" 

( 1982) structure of a multivariable linear model 

are cOI!lpared 

Woodside ( 1971} x x x x An earlier basic raferenee for rank tests 

Young et al x x x x x Some refinements of the instromental 
(1980) product moment test for order selection are 

presented tagether with a comprehensive set 

of applications 

Yuan ( 1982) x Test of hypothesis on the coefficients of 

dynamic systems are discuseed with model 

structure determination as an example 


