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This work introduces a method for the construction of a reduced order model in the 

frequency domain. With input data obtained from the TAU linearized frequency domain 

solver for a NLR7301 airfoil in the transonic domain, the reduced order model shows a strong 

ability to reconstruct the full order frequency response. On the other hand, the model built in 

the frequency domain gives promising results when applied to reconstruct non-periodic 

motions, as a 1-cos pitching. Compared to a time domain simulation, the lift and the pitching 

moment obtained are accurate, even with small sizes for the reduced order model, and with a 

substantial gain of calculation time. 

 

Nomenclature 

a = angle of attack 

a0 = amplitude of the pitching motion 

am = mean angle of the pitching motion 

Cp = pressure coefficient 

CL = lift coefficient 

CD = Drag coefficient 

CM = Pitching moment coefficient 

k =   Reduced frequency 

N =   Number of input points 

r =   size of the reduced order model 

U∞ =   Freestream velocity 

 

I. Introduction 

omputational Fluid Dynamics (CFD) now has a wide range of validity where it gives highly accurate results 

compared to wind tunnel experiments. It is extensively used in industry for steady analysis such as performance 

studies. However, unsteady aerodynamics is also important for aircraft design and aeroelastic applications such as 

flutter speed or limit cycle oscillation prediction. Whilst more powerful computers have enabled the application of 
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CFD for unsteady loads calculations, in practice the computational cost remains too high for routine use, especially 

when it comes to viscous flows. 

Whilst CFD models are useful to understand phenomena and predict behaviors; a high number of degrees of freedom 

leads to extended calculation times. Reduced order models (ROMs) can be constructed that aim to decrease the CPU 

time by capturing the dominant behaviour of the numerical model with a few degrees of freedom, whilst retaining 

good accuracy and stability. These ROMs enable [7] the system to be studied and simplified to determine the control 

laws. Model order reduction can be achieved using different methods; these depend on the physics of the system, the 

accuracy required and the information available. For systems whose model is strongly linked to the physics, order 

reduction can even be performed by hand, thinking about the independencies between the parameters; interpolation 

can also be used. 

 

While building a ROM, one technique is to define projection bases and spaces. The idea is to use linear algebra and 

to construct a subspace orthogonal to the Krylov subspace; this can be performed thanks to the Gram-Schmidt 

orthonormalization method. Since it can be unstable [8] a modified Gram-Schmidt can be used. In order to achieve 

this, Arnoldi developed an iterative algorithm [9]. If the system matrix is hermitian, the Lanczos method [10] is much 

faster. It is based on the Arnoldi method, but as the system matrix is symmetric, the algorithm is much simpler and 

the recurrence is shorter: each vector 𝑈𝑗+1 is directly calculated from the two previous ones 𝑈𝑗 and 𝑈𝑗−1. The Lanczos 

algorithm can also be combined with a Padé approximation, for a method called Padé via Lanczos (PVL). This method 

aims to preserve of the stability of the system. In fact, the reduced order modeling techniques using the Padé 

approximation do not ensure this stability [11]. Other methods such as partial PVL [12] enable the poles and the zeros 

of the reduced transfer function to be corrected; it leads to an enhanced stability. Antoulas [13] uses the advantages of 

both Krylov subspaces and balanced truncation approaches. Finally, the Passive Reduced-order Interconnect 

Macromodelling Algorithm, while using the Arnoldi method guarantees the preservation of passivity and enables an 

enhanced accuracy [14].  

 

A second stream of scientific analysis uses the system response to different excitations to identify the reduced matrices. 

Based on Hankel singular values, several algorithms were developed for model reduction such as singular value 

decomposition (SVD). The idea is to eliminate the states requiring a large amount of energy to be reached, or a large 

amount of energy to be observed, as both correspond to small eigenvalues [15]. Grammians are introduced since they 

can be used to quantify these amounts of energy. The reachability grammian quantifies the energy needed to bring a 

state to a chosen value, whereas the observability grammian quantifies the energy provided by an observed state [16]. 

The value of these grammians obviously depends on the basis on which they are calculated. In the case of a stable 

system, a basis in the state space exists in which states that are difficult to reach are also difficult to observe. Normally, 

the Hankel singular values decrease rapidly. The balanced truncation aims at truncating the modes that are not 

reachable and observable. They correspond to the smallest Hankel singular values. The singular value decomposition 

is well-conditioned, stable and can always work, but can be expensive to compute. It solves high-dimensional 

Lyapunov equations [17] ; the storage required is of the order O(n²), while the number of operations is of the order 

O(n3). Many balancing methods exist, such as stochastic balancing, bounded real balancing, positive real balancing 

[18]. The frequency weighted balancing [19], can be useful if a good approximation is needed only in a specific 

frequency range. However, the reduced model is not necessarily stable if both input and output are weighted. These 

frequency weighted balancing methods have undertaken many improvements: the most recent one guarantees stability 

and yields to a simple error bound [20]. Based on Markov parameters, the Padé approximation (moment matching 

method) [21] has then been improved by Arnoldi and Lanczos [10] and is particularly recommended in the case of 

high dimension systems. 

 

The reduced order model developed in this paper falls into the second category of approach and is described in the 

following sections..   
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II. Reduced order model 

For given flow conditions, the frequency response of the integrated aerodynamic coefficients obtained with a CFD 

code is directly related to the frequency of the pitching motion. It is therefore appropriate to build a reduced order 

model of the frequency response in the frequency domain instead of performing a classical reduction in the time 

domain. After creating a reduced order model in the frequency domain, it can be transformed back into the continuous 

time domain where it is then possible to reconstruct any motion. The method used in ROM creation means that the  

the continuous and discrete spaces (and vice versa) are linked via a bilinear transformation and frequencies in the 

discrete space in the range [0, π] are mapped to frequencies in the continuous space in the range [0,∞]. The developed 

reduced order model gives accurate results when applied to a pitching airfoil in the transonic range, with no shock-

induced separation. The method decomposes a Hankel matrix formed using discrete transfer function values to keep 

the dominant modes of the frequency response. The method could also be used to build a ROM based on experimental 

without knowing the system matrices. As it needs equispaced input data in the discrete frequency domain, the choice 

of the sampling spacing is a key element. 

The equispaced discrete frequencies are defined by 

 

 ω̂𝑑(𝑘) =  
𝑘 𝜋

𝑁
, k ∈  [0 , N]   (1) 

 

The relationship to continuous frequencies as a result of the linking bilinear transformation is controlled by the 

sampling time parameter T via  

 

 ω(k) =  
2

𝑇
 tan

ω̂𝑑(𝑘)

2
 (2) 

 

T has to be chosen such that the continuous reduced frequencies are in the range of interest for the model input. In 

aerodynamics it corresponds to continuous reduced frequencies mostly in the interval [0.01,10]. 
 

A. Singular value decomposition 

The method uses samples of the transfer function Gd impulse response equi-spaced in the interval [0,π]. To map the 

whole unit circle, the algorithm extends the domain of the input data to the interval [π,2π] using the conjugate of Gd : 

 

 G𝑑(𝑘 + 𝑁) =  G𝑑
∗ (𝑁 − 𝑘) (3) 

 

A singular value decomposition of the Hankel matrix defined using the 2N-points inverse discrete Fourier transform 

(IDFT) is performed  [23]. The model reduction is performed by keeping the largest singular values. 

B. Calculation of discrete reduced matrices 

A discrete-time linear and stable MIMO model of n-th order, with r-inputs and m-outputs can be described using the 

following state space representation 

 

 
𝒙(𝑘 + 1) = 𝐴𝑑𝒙(𝑘) + 𝐵𝑑𝒖(𝑘) 

𝒚(𝑘) = 𝐶𝑑𝒚(𝑘) + 𝐷𝑑𝒖(𝑘) 
(4) 

 

𝒙(𝑡) ∈ ℝn represents the vector of different degrees of freedom (called state vector in control theory). It contains for 

example the unknown physical variables, such as velocity, pressure, density. 𝒚(𝑡) ∈ ℝp and 𝒖(𝑡) ∈ ℝm respectively 

represent the vector of the outputs of interest of the system, and the vector of inputs. Tthis state space model has a 

transfer function  Gd  and it is convenient notation is consider that the system can be represented by its transfer function 

or its state space matrices:  

 𝐺𝑑 ∶  (
𝐴𝑑 𝐵𝑑

𝐶𝑑 𝐷𝑑
) (5) 

 

The linked continuous-time state space model is represented in a similar notation by 

 

 𝐺 ∶  (
𝐴 𝐵
𝐶 𝐷

) (6) 
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The reduced order model in the discrete frequency space has reduced matrices 𝐴̂𝑑  , 𝐵̂𝑑 , 𝐶̂𝑑  nd 𝐷̂𝑑  are calculated [24].  

The reduced discrete transfer function 𝐺̂𝑑  can be written as 

 

 𝐺𝑑̂ = 𝐶̂𝑑(𝑧𝐼 − 𝐴̂𝑑)−1𝐵̂𝑑 + 𝐷̂𝑑 , 𝑧 ∈ ℂ (7) 

C. Bilinear transformation  

𝐺̂  the reduced order transfer function in the continuous time domain is then 

 

 𝐺̂(𝑧) = 𝐶̂(𝑧𝐼 − 𝐴̂)−1𝐵̂ + 𝐷̂ (8) 

 

and using the bilinear transformation [25] the reduced order system matrices are given by: 

 

 𝐴̂ =  
2

𝑇
 (𝐼 + 𝐴̂𝑑)−1 (𝐴̂𝑑 − 𝐼) (9) 

 𝐵̂ =  
2

√𝑇
(𝐼 + 𝐴̂𝑑) 𝐵̂𝑑 (10) 

 𝐶̂ =  
2

√𝑇
 𝐶̂𝑑 (𝐼 + 𝐴̂𝑑)−1 (11) 

 𝐷̂ =  𝐷̂𝑑 − 𝐶̂𝑑 (𝐼 + 𝐴̂𝑑)−1 𝐵̂𝑑  (12) 

   

III. Reconstruction of pitching motions  

The reduced order model is constructed based on a chosen number Nr of equispaced discrete frequencies corresponding 

to the same number of continuous frequencies.  However the transfer function 𝐺̂𝑑 can be reconstructed for all 

frequencies and the response to both periodic and non-periodic inputs in the continuous time-domain can also be 

simulated. 

A. Periodic input 

 

As a first step, the model has been applied to an airfoil in a pitching motion at different frequencies. The motion is 

sinusoidal and described by the following equation: 

 

 𝛼 =  𝛼𝑚 +  𝛼0 ∙ sin  (ω ∙ 𝑡 ) (13) 
 

where 𝛼𝑚 is the mean angle of attack, 𝛼0 the amplitude and ω the frequency of the motion. Let 𝑈∞ be the freestream 

velocity and c the airfoil chord, the reduced frequency is defined such as 

 

 𝑘 =  
ω ∙ c

𝑈∞

 (14) 

 

The airfoil chosen is a NLR7301, since it is supercritical it is close to the profiles used in aircraft design and literature 

provides many results for validation. To be able to use CFD, a  mesh is created for inviscid simulations with the TAU 

CFD code [26]. The Euler equations are discretized using central differences, with a scalar dissipation scheme. Finally, 

the chosen relaxation solver is Backward Euler. In addition to the classical unsteady Euler computations, as the 

amplitude of the motion is small and the motion periodic, it is possible to use a linearized frequency domain solver 

[28]. 

 

In order to assess the quality of the reduced order model, three values of T are chosen, and for each of those, N=256 

LFD calculations are launched. They enable ROMs of different sizes to be built in a systematic way with different 

number of input data [29]. N being called the number of training points, different models are created with 

𝑁/(2. 𝑖)samples, i ∈ [2,4,8,16]. For each model, the quality is judged by reconstructing each magnitude and phase 

corresponding to the N frequencies of the training set and by comparing it to the LFD results (Figure 1) . 
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Figure 1: Comparison between the frequency responses of two different ROM, N=64, T=0.05 

 

Even with a very small model (r=9), the model shows a strong ability to reconstruct the frequency response.  

 

The advantage of this method is that it reconstructs the aerodynamic coefficients for any frequency between 0 and 

infinity. Therefore, for a given frequency, it is straight forward to reconstruct the aerodynamic coefficients during a 

period using the magnitude and the phase given as an output by the model. Two reduced order model of size Nr=3 

and Nr=15 have been built with 32 samples, and the result is compared to the value given by a LFD calculation for 

the same frequency (Figure 2).  

 

 

 
 

Figure 2: Lift and moment reconstruction, k=0.5, N=32, r=[3,15] vs LFD 
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B. Non-periodic input 

 

1. Description 

 

The reduced order model built is used to reconstruct a non-periodic motion, here a 1-cosine pitching (Figure 3) . The 

period of the 1-cosine is proportional to the reduced frequency chosen. 

 

 
Figure 3:  Prescribed motion, k=0.05 

 

The centre of rotation for the pitching motion is at 40% chord. The static lift shows a linear behavior, and the moment 

is quasi linear (Figure 4) . 

 

 
 

Figure 4:  Static coefficients, Ma=0.68 
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2. Influence of the size of the reduced order model 
  

 

For three different reduced frequencies, the pitching moment reconstructed by reduced order models of different sizes 

r=[5;9;12;23]) are plotted (Figure 5) and compared to the inviscid time domain simulation with TAU.  

 

 
                                           

                                               5.a. k=0.05                                                                         5.b. k=0.5 

 

Figure 5:  Pitching moment, Euler vs ROM, k=[0.05.0.5], various r 

 

In both cases, the pitching moment given by the ROM seems to be accurate for almost all the ROM sizes. Only r=5 

seems to be to low to capture the entire behavior. This is confirmed when displaying the same quantities for k=5  

(Figure 6) 

 
 

Figure 6:  Pitching moment, Euler vs ROM, k=5, various r 

 

 

The last points being produced with a fixed number of input points, it can be interesting to study more deeply the 

influence of  this parameter. 
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3. Influence of the number of input points 

 

Different reduced order models are built using a different number of input points, N=[16;32;64;128]. For three 

different ROM sizes, the effect of changing N is analyzed. Herebelow, the lift and the pitching moment are 

reconstructed and compared with Euler time domain simulations (Figure 7). The reduced frequency chosen is k=5, 

since it is the most challenging case, with more dynamics to be captured by the reduced order model. 

  

ROM size Lift Pitching moment 

r=5 

  

r=9 

  

r=12 

  
 

Figure 7:  1-cos pitching, k=5, Euler vs ROM based on LFD 
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As far as the pitching moment is concerned, N=16 seems to be too small to accurate a good prediction in any case. 

However, from N=9, the reduced order model gives a satisfactory value.The number of input has an influence on the 

results, as it can be seen when reconstructing the pitching moment  In general, the model of size 3 cannot predict 

accurately the time domain simulation. However, for both lift and moment, a size of 9 ensures a good reconstruction 

at both frequencies. Moreover, the peak value is really well represented. 

 

To perform a deeper analysis on the right model size of the bilinear transform, different kinds of error are investigated 

: relative error in the maximum value predicted by the ROM, the time at which this maximum occurs, and the error in 

the area between the curves (integral error). The relative errors are given by 

 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =  
|𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑅𝑂𝑀 − 𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐸𝑢𝑙𝑒𝑟|

𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐸𝑢𝑙𝑒𝑟

∗ 100 (15) 

 

First, the error in the maximum value is plotted for k=0.5 for both lift and pitching moment (Figure 8). 

 

 

 
 

Figure 8:  Relative peak errors, lift and pitching moment, k=0.5 
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Up to ROM sizes around 10, the peak error decreases, meaning that the value predicted by the model is closer and 

closer to the value given by the Euler time domain simulation. For bigger sizes, the error tends to remain constant ; 

indeed the error between the ROM (built with LFD calculations) and the Euler simulation becomes dominated by the 

error between LFD and Euler. 

 

As far as the time at which this maximum is reached, the error is plotted for the pitching moment (Figure 9) 

 

 
 

Figure 9:  Relative peak time error, k=0.5, pitching moment 

 

Once again, the same trend can be observed, with a fast decrease of the error with the ROM size first. The error reaches 

a minimum for Rom size of 10. The relative error obtained at this point is low (0.05%). 

 

IV. Conclusions 

A reduced order model in the frequency domain has been built and shows a strong ability to reconstruct the frequency 

response of an airfoil undergoing an harmonic motion. As far as non-periodic motions are concerned,  the model has 

been tested to reconstruct a 1-cos pitching. Even with small reduced model sizes and few input points, it demonstrates 

to have a good accuracy in the transonic domain, for the whole range of frequencies used in aerodynamics. 
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