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I. Introduction. 

In recent years aspects of system identi­
fication have been discussed in a multi­
tude of papers, at many conferences and in 
an appreciable number of university cour­
ses. Apparently the interest in this sub­
ject has different roots, e.g.: 

o Definite needs by engineers in process 
industries to obtain a better knowledge 
about their plants for obtaining impro­
ved control. This holds not only for the 
chemical but also for the mechanica! and 
other production industries. 

o The task to study high performance aero 
and space vehicles, as well as the dyna­
mica of more down-to-earth objects like 
railway carriages and hydrofoils. 

o Study of the human being in tracking 
action and in other types of controL 

o Research of biologica! functions, e.g. 
of neuromuscular systems like the eye 
pupil response, arm or leg control, 
heart rate control, etc. 

Not only the needs for, but also the poss~ 
hilities of estimation have dramatically 
changed with the development of computer 
hardware and software. More or less apart 
from the "engineering" and "biologica!" 
approach the econometricians and statisti­
cians have been werking on dynamica! eco­
nomie models, leading to incidental cross­
-fertilization with engineering. 

Atlmany universities the field has been 
recognized as a legitimate subject for 
faculty and Ph.D. research. 
The net result of this development is a 
large number of publications, either 
accentuating a particular type of approach 
or descrihing a certain case study. In 
this survey paper the "motivation" of the 
identification is derived from control 
engineering applications. 

Throughout the history of control theory 
it has been known that the knowledie about 
a system and its environment, which is re­
quired to design a system, is ltldom avair 
able a priori. Even if the equations 
governing a system are known in principle 
it often happens 'that knowledge of parti­
cular parameters is missing. It is not 



1 uncommon that the models which are avail­
able are much too complex etc. Such situ­
ations ~aturally occur in many other 
fields. There are, however, twq facts 
which are unique for the identification 
problems occurring ·in automatic cöntrol, 
i.e. 

o It is often possible to perferm experi­
ments on the system in order to obtain 
the lacking knowledge. · 

o The purpose of the identification is to 
design a control strategy. 

One of the factors which undoubtedly con­
tributed very much to the great success of 
frequency response techniques in "classi­
ca!" control theory was the fact that the 

' design methods were accompanied by a very 
powerful technique for systems identifica­
tion, i.e. frequency analysis. This tech­
nique made it possible to determine the 
transfer functions accurately, which is 
precisely what is neerled to apply the syn­
thesis methods based on logarithmic dia­
grams. The models used in "modern" control 
theory are with a few exceptions ~~!~~= 
!~i~ models in terms of state equations. 

t The desire to determine such models from 
experimental data has naturally renewed 
the interesta of control engineers in pa­
rameter estimation and related techniques. 

Status of the Field 
Although it is very difficult to get an 
overview of a field in rapid development 
we will try to point out a few facts which 
have struck us as being relevant when we 
prepared this survey. 
The field of identification is at the mo­
ment rather bewildering, even for so-cal~d 
experts, Many different methods and tech­
niques are being analysed and treated. 
"New methods" are suggested en masse and, 
on the surface, the field appears to look 
more like a bag. of tricks than a unified · 
subject. On the other hand many of the 
so-called different methods are in fact 
quite similar. It seems to be highly de­
sirable to achieve some unification of the 
field. This means that an abstract frame­
werk to treat identification problems is 
needed. In this context it appears to us 
that the definition of an identification 
problem given by Zadeh (1962) can be used 
as a starting point, i.e. an identifica­
tion problem is characterized by three 
quantities: a class of models, a class of 
input signals and a criterion. We have 
tried to emphasize this point of view 
throughout the paper. 

For a survey paper like this it is out of 
question to strive for completeness. Limi­
tations are given by: the number of rele­
vant publications; the balance between the 
"educational" and the "expert" s lant of 
this presentation; the (in)coherence of 
the field and the wide spectrum of related 
topics. 

Also it is desirabie to keep in mind that 
until now a number of survey papers has 
been written, based on many references. 
For an indicatioh where this new paper 
stands with respect to the older ones the 
reader is presented with an enumeration 
of topics dealt with in the IFAC survey 
papers: 

P, Eykhoff, P.M. van der Grinten, 
H. Kwakernaak, B.P. Veltman. 

~~~!~~~-~~~11!~8-~~~-i~~~Ei~i~~Ei~~ 
Third congress IFAC·, Londen 1966 A 

83 references 

M. Cuenod, A.P. Sage. 
f~~E~~!~~~-~f-~~~-~~!h~~-~~~~-~~~ 
E!~~~~~-i~~~Eifi~~Ei~~ 
IFAC symposium on "Identification in B 
Automatic Control Systems", Prague 
1967; also in: Automatics, 4, (1968), 
235-269 79 referënces 

P. Eykhoff, 

~;~~~~~-E~~~~!~~-~~~-~!~!~-~~!i~~: 
!:=.2~ ' 
IFAC symposium on "Identification in C 
Automatic Control Systems", Prague 
1967; also in: Automatics, 4, (1968), 
205-233 11 referënces 

A.V. Balakrishnan, V. Peterka. 
l~~~!i!i~!!i~~-i~-!~!~~!i~-~~~!!~1 
~~~!~~ 
Fourth congress IFAC, Warszawa, 1969 D 

125 raferences 

and of this paper, indicated by E 
213 references 

IGENERAL -ASPECTSj 
·---- ~------

The Eurpose of identification/estimation 
Erocedures. 

identification 
- definition and formulation E 

D,E - and control 
model representation 
- a priori knowledge 
- linear 
- linear in the parameters 
- nonlinear, general 
- nonlinear, Wieoer 
- nonlinear, Volterra 
- lin./nonlin.-in-parameters 
- multivariable 
industrial models 
- use 
- examples dynamic/static 

c 
A,B,C,D,E 

C,E 
B 
B 
D 
E 
E 

A 
A 



Formulation of the estimation problem. 

classes of instrumentation 
- models 
- input signal 

A,C,D,E 
E 
E 

- criteria E 
-explicit mathemat./model adjust- A 

ment 
- "one-shot" techn. /iterative 

techn. 
achievable accuracy 
input noise 
identifiability 

E 

D,E 
E 
E 

relationship between estimation 
techniques C 

Least squares/generalized least squares . 

~2~~:~h2E~-E~~h~ig~~~: 
auto- and cross correlation 
differential approximation 
deconvolution, numerical 
normal equations (sampled 

signals) 
residuals 
test of model order 
combined model and noise param. 

A,C,D,E 

A,B,C,E 
B 
B 

A,C,D,E 
E 
E 

estimation E 
instrumental variables D,E 
generalized model/minimization of 

equation-error A,C,D,E 

iE~!!EiY~-E~~h~is~~~: 
model adjustment, 

on-line, real time 
sensitivity 
hill climbing techniques 

stochastic approximation 
relation with Kalman filtering 

A,C,D,E 
D,E 
A,C 

E 
C,D,E 

E 

Maximum like lihood. A, C, D, E 

achievab le accuracy D 
properties C,E 

Bayes 1 estimation. C 

Use of deterministic testsignals. 

choice of input signals E 
comparison of a number of test-

signals A 
sinusoidal testsignals B 
pseudo-random binary-noise A,D 

state description, examples A 
state estimation, A,E 

nonlinear filtering E 
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[PARAMETER AND STATE ESTIMATION COMBINEDI 

gradient method 
quasilinearization 
invariant imbedding 

B 
B,C,E 

B,E 

Another survey paper of general interest 
is Bekey ( 1969) as well as Strobel (1967, 
1968). 

2. General properties of identification 
problems. 

Purpose of Identification 

When formulating and solving an identifi­
cation problem it is important to have 
the E~!E2~~ of the identification in mind. 
In control problems the final goal is of­
ten to design control strategies for a 
particular system. There are, however, 
also situations where the primary interest 
is to analyse the properties of a system. 
Determination of rate coefficients in 
chemica! reactions, heat transfer coeffi­
cients of industrial processes and reac­
tivity coefficients in nuclear reactors 
are typical examples of such a "diagnostic!' 
situation. In such a case determination of 
specific parameter values might be the 
final goal of the identification. Many 
problems of this type are also found in 
biology, economy and medicine. 
Even if the purpose of the identification 
is to design a control system the charac­
ter of the problem might vary widely de­
pending on the nature of the control pro­
blem. A few examples are given below: 

o Design a stable regulator. 

o Design a control program for optimal 
transition .from one state to another. 

o Design a regulator which minimizes the 
variations in process variables due to 
disturbances. 

In the first case it might be sufficient 
to have a fairly crude model of the system 
dynamica. The second control problem might 
require a fairly accurate model of the 
system dynamica. In the third problem it 
is also necessary to have a model of the 
environment of the system. Assuming that 
the ultimate aim of the identification is 
to design a control strategy for a system, 
what would constitute a satisfactory solu­
tion from a practical point of view? 
In most practical problems there is seldom 
sufficient a priori information about a 
system and its environment to design a 
control system from a priori data only. It 
will often be necessary to make some kind 
of expe.riment, observe the process while 
using perturbations as input signals and 
observe the corresponding changes in pro­
cess variables. In practice there are, 
however, often severe limitations on the 



experiments that can be performed. In order to 
get realistic models it is often necessary to 
carry out the experiments ~~!!~8-~~!~~1-~E~!~: 
tion. This means that if the system is pertur­
bëd: the perturbations must be small so that 
the production is hardly disturbed. It might 
be necessary to have several regulators in 
eperation during the experiment in order to 
keep the process fluctuations within accepta­
bie limits. This may have an important influ­
ence on the estimation-results. 
When carrying out identification experiments 
of this type there are many questions which 
arise naturally: 

o How should the experiment be planned? Should 
a sequentia! design be used, i.e. plan an 
experiment using the available a priori in­
formation, perferm that experiment, plan a 
new experiment based on the results obtained, 
etc. When should the experimentation stop? 

o What kind of analysis should be applied to 
the results of the experiment in order to 
arrive at control strategies with desired 
properties?·What confidence can be given to 
the results? 

o What type of perturbation signa! should be 
used to get as good results as possible 
within the limits given by the experimental 
conditions? 

o If a digital computer is used what is a suit­
able choice of the sampling interval? 

In spite of the large amount of work that has 
been carried out in the area of system identi­
fication we have at present practically no 
general answers to the problems raised above. 
In practice most of these general problems are 
therefore answered in an ad hoc manner, 
leaving the analysis to more specified pro­
blems. In a recent paper Jacob and Zadeh (1969) 
discuss some of the questions in conneetion 
with the problem of identifying a finite state 
machine; c.f. also Angel and Bekey (1968)". 
Some aspects of the choice of sampling inter­
vals are given in Fantauzzi (1968), Îström 
(1969) and Sano and Terao (1969). · 
Since the general problems discussed above are 
very difficult to formalize one may wonder if 
there will ever be rational answers to them. 
Nevertheless it is .worthwhile to recognize the 
fact, that the final purpose of identification 
is aften the design of a control system, since 
this simple observation may resolve many of 
the ambiguities of an identification problem. 
A typical example is the discussion whether 
the accuracy of an identification should be 
judged on the basis of deviations in the model 
E!!!~~~!! or in the ~!~~=I~!E~~!~· If the 
ultimate purpose is to design control systems 
then it seems logical that the accuracy of an 
identification should be judged on the basis 
of the E~!!g~~~~ of the control system de­
signed from the results of the identification. 

Formulation of Identification Problems 

The following formulation of the identification 
I 

problem given by Zadeh (1962) is still rele­
vant: 
"Identifiaation is the deter>mination~ on the 
basis of input and output~ of a system within 
a speaified atass of systems, to whiah the 
system unde:r> test is equivalent". 

Using Zadeh's formulation it is necessary to 
specify a class of systems, S = {S}, a class 
of input signals, U, and the meaning of 
"equivalent", In the following we will call 
"the system under test" simply the E!~5:~~! and 
the elements of S will be called models. 
Equivalence is often defined in t;~~;-~f a 
criterion or a loss function which is a func­
tional of the pr~~~;;-~~tp~t y and the model 
output Ym• i.e. 

V = V(y,y ) 
m 

(2. I) 

Two models m1 and m2 are then said to be 
~g~!Y~1~~~ if the value of the loss function 
is the same for both models i.e. 

V(y,ym) = V(y,ym ), 
I 2 

There is a large freedom in the problem fermu­
lation which is reflected in the literature on 
identification problems. The selection of the 
class of models, S, the class of input signals, 
U, and the erfterion is largely influenced by 
the a priori knowledge of the process as well 
as by the purpose of the identification. 
When equivalence is defined by means of a loss 
function the identification problem is simply 
an gEfi~i~!!i2~-EI2~!~~: find a model S0 €S 
such that the loss function is as small as 
possible. In such a case it is natura! to ask 
several questions: 

o Is the minimum achieved? 

o Is there a unique solution? 

o Is the uniqueness of the salution influenced 
by the choice of input signals? 

o If the salution is not unique, what is the 
character of the models which given the same 
value of the loss function and how should S 
be restricted in order to ensure uniqueness? 

Answers to some of these problems have been 
given for a simple class of linear systems 
arising in biomedical applications by Bellman 
and ~ström (1969). The class of models S has 
been called !!!!:~fi!.i.!!~!!: if the optimization 
problem has a unique solution. Examples of 
identifiable and non-identifiable classes are 
also given. 
The formulation of an identification problem 
as an optimization problem also makes it clear 
that there are connections between identifica­
tion theory and approximation theory. 
Many examples of these are found in the lite­
rature e.g. Lampard (1955), Kitamori (1960), 
Barker and Hawley (1966), Roberts (1966 and 
1967) and ethers, where covariance functions 
are identified as coefficients in orthogonal 
series expansions. Recent examples are 
Schwartze (1969), Gorecki and Turowicz (1969). 



Another type of identification problem is ob­
tained by imbedding in a probabilistic frame­
werk. If S is defined as a parametrie class, 
S = {S. }, where S is a parameter, the identi­
ficati~n problem then reduces to a parameter 
estimation problem. Such a formulation makes 
it possible to exploit the tools of estimation 
and decision theory. In particular it is poss­
ible to use special estimation methods e.g. 
the maximum likelihoed method, Bayes' method, 
or the rnin-max method. It is possible to 
assign accuracies to the parameter estimates 
and to test various hypotheses. 

Also in many probabilistic situations it turns 
out that the estimation problern can be reduced 
to an optimization problem. In such a case the 
loss function (2.1) is, however, given by the 
probabilistic assumptions. Conversel~ to a 
given loss function it is often poss1ble to 
find a probabilistic interpretation, 
There are several good books on estimation . 
theory available, e.g. Deutsch (1965) and Nah1 
(1969), A sumrnary of the important concepts 
and their application to process identifica­
tion is given by Eykhoff (1967). An exposé of 
the elements of estimation theory is also 
given in Appendix A. 

Also in the probabilistic case it is possible 
to define a concept of !~~~!!~!~~!1!!l using 
the framewerk of estimation theory. In ~ström 
and Bohlin (1965) a system is called identi­
fiable if the estimate is consistent. A neces­
sary condition is, that the information matrix 
is positive definite. This concept of identi­
fiability is pursued further in Balakrishnan 
(1969), Staley and Yue (1969). 

Relations between Identification and Control; 
- the Separatlon Hypothesis 

Whenever the design of a control system around 
a partially known process is approached via 
identification it is an a priori assumption 
that the design can be divided into two steps: 
identification and control. In analogy with 
the theory of stochastic control we refer to 
this assurnption as the ~~E~!~!!~~-~lE~!~~~!~· 
The approach is very natural, in particula7 if 
we consider the multitude of techniques wh1ch 
have been developed for the design of systems 
with known procesa dynamica and known environ­
ments. However, it is seldom true that optimum 
solutions are obtained if a process is identi­
fied and the results of the identification 
are used in a design procedure,developed 
under the assumption that the process and its 
environment are known precisely, It can be 
necessary to modify the control strategy to 
take into account the fact that the identifi­
cation is not precise, Conceptually it is 
known how these problems should be handled, 
In the extreme case when identification and 
control are done simultaneously for a system 
with time-varying parameters the ~~!1-~~~!E~! 
concept of Fel'dbaum (1960,1961) can be 
applied. This approach will, however, lead to 
exorbitant computational problems even for 
simple cases, C,f, alsoMendes (1970), and 
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tornpare Sectien 7. 
It can also be argued that the problem of 
cantrolling a process with unknown parameters 
can be approached without making reference 
to identification at all, As a typical example 
we mention on-line tuning of PID regulators. 
In any case it seems to be a worthwhile pro­
blem to investigate rigorously under what 
conditions the separation hypothesis is valid, 
Initial attempts in this direction have been 
made by Schwartz and Steiglitz (1968), Rström 
and Wittenmark (1969). 

Apart from the obvious fact that it is desi­
rabie to choose a class of roodels S for which 
there is a control theory available, there are 
also many other interesting questions in the 
area of identification and control e.g. 

o Is it possible to obtain rational choices 
of model structures and criteria for the 
identification if we know that the results 
of identification will be used to design 
control strategies? 

o What "accuracy" is required of the solution 
of an identification problem if the separa­
tion hypothesis should be valid at least 
with a specified error? 

Partial answers to these questions are given 
by Rström and Wittenmark (1969) for a restric­
ted class of problems. 

Accuracy of Identification 

The problem of assigning accuracy to the 
result of an identification is an important 
problem and also a problem which always seems 
to give rise to discussions; e.g. Qvarnström 
(1964). The reason is that it is possible to 
define accuracy in many different ways and 
that an identification which is accurate in 
one sense may be very inaccurate in another 
sense. 
For example in the special case of linear 
systems it is possible to define accuracy in 
terms of deviations in the transfer function, 
in the weighting function (impulse response) 
or in the parameters of a parametrie model. 
Since the Fourier transform is an unbounded 
operator small errors in the weighting function 
can very well give rise to large errors in the 
transfer function and vice versa. A discussion 
of this is given by Unbehauen and Schlegel 
(1967) and by Strobel (1967). It is also pos­
sibie to construct examples where there are 
large variations in a parametrie model in spite 
of the fact that the corresponding impulse­
response does not change much. See e.g. Strobel 
(1967). 
Many controversies can be resolved if we take 
the ultimate goal of the identification into 
account. This approach has been taken by 
St~pán (1967) who conaiders the variation of 
the amplitude margin with the system dynamics. 
The following example illustrates the point. 

ExamEle. Consider the process ST given by 

dx - = u(t-T) dt (2.2) 



The transfer function is 

. I -sT 
H (s) = - • e 

T s 

and the unit step response is 

h.r(t) J a 
l t-T 

a < t < T 

t > T 

(2.3) 

(2.4) 

Assume that the process ST is identified as Sa. 
Is it possible to give a sensible meaning to 
the accuracy of the identification? It is imme­
diately clear that the differences 

max I ~(t) - ha(t) I 
t 

max I Hr(jw) - Ha(jw) I 
w 

(2.5) 

(2. 6) 

can be made arbitrarily small if T is chosen 
small enough. On this basis it thus seems 
reasonable to say that Sa is an accurate repre­
sentation of ST if T is small. On the other 
hand the difference 

llog HT (jw)- log Ha (jw)j = lwTj (2. 7) 

i.e. the difference in phase shift, can be made 
arbitrarily large, no matter how small we choose 
T. 
Finally assume that it is desired to control 
the system (2.2) with the initial conditton 

x(a) = I 

in such a way that the criterion 

00 

V- I {a2x2(t) + u 2(t)}dt 

a 

(2. 8) 

(2.9) 

is minimal. Suppose that an identificatioó has 
resulted in the model sa while the process is 
actually ST. How large a deviation of the loss 
function is obtained? For s0 the control stra­
tegy which .minimizes (2.9) a given by 

u(t) = - Clx(t) (2. 1 0) 

The minimal value of the loss is 

min V • Cl 

If a = I it can be shown that a very slight in­
crease of the loss function is obtained if say 
T = a.OOI. 
However, if Cl c 2000 (>nf 2T) the criterion 
(2.9) will be infinite for the strategy (2.10) 
because the system is unstable. We thus find 
that the same model error is either negligible 
or disastrous depending on the properties of 
the loss function. 

3. Classification of identification methods, 

The different identification schemes that are 
available can be classified according to the 
basic elements of the problem i.e. the class of 
systems S, the input signals U and the crite~ 
rion, Apart from this it might also be of 
interest to classify them with respect to im­
plementation and data processing requirements. 
For example: in many cases it might be suffi­
cient to do all computations off line, while 
ether problems might require th~t-thë results 
are obtained on line, i.e. at the same time the 
measurements ~~ë-d;ne. Classifications have 
been done extensively in Eykhoff (1967), 
Balakrishnan and Peterka (1969). 

The Class of Models S, 

The models can be characterized in many diffe­
rent ways: by ~~~E~!~~!!if representations 
such as impulse response, transfer function, 
covariance functions, speetral densities, 
Volterra series and : by E~!~~!!if models such 
as state models 

dx dt f(x,u,l3) 

y = g(x,u,l3) (3. I) 

where x is the state vector, u the input, y the 
output and 13 a parameter (vector), It is known 
that the parametrie models can give results 
with large errors if the order of the model 
does not agree with the order of the process. 
An illustration of this is given in an example 
of Sectien 5. A more detailed discussion of 
parametrie model structure is given in Sectien 
4. The nonparametrie representations have the 
advantage that it is not necessary to specify 
the order of the process explicitely. These 
representations are, however, intrinsically in­
finite dimensional which means that it is fre~ 
quently possible to obtain a model such that 
its output agrees exactly with the process out­
put. A typical example taken from Gerdin 
is given below. 

Example. Suppose that the class of models is 
taken as the class of linear time-invariant 
systems with a given transfer function. A 
reasonable estimate of the transfer function is 
then gi ven by 

· fT -st 
0 y(t)e dt 

fT -st 
0 u(t)e dt 

where u is the input to the process and y is 
the output. To "eliminate disturbances" we 
might instead first compute the input covari­
ance function 

T-1•1 
J u(t)u(t+T)dt 

0 



and then estimate the transfer function by 

T 

J R (-r)e-s'd-r 
uy 

-T 
T 

J Ru(-r)e-s'd-r 

-T 

It is easy to show that H
1
=H . The reason is 

simply that the chosen transter function will 
make the model output exactly equal tó the pro­
cess output, at least if the process is initi­
ally at rest. 
Interesting aspects of parametrie versus non­
parametrie models are found in the literature 
on time series analysis. See for example Mann 
and Wold (1943), Whittle (1963), Grenander and 
Rosenblatt (1957), Jenkins and Watts (1963). 
Needless to say the models must of course 
finally be judged with respect to the ultimate 
aim. 

The Class of Input Signals 

It is well known that significant simplifica­
tions in the camputations can be achieved by 
choosing input signals of a special type e.g. 
impulse functions, step functions, "colored" 
or white noise, sinusoidal signals, pseudo­
random binary noise (PRBS), etc. A bibliography 
on PRBS is given in Nikifcruk and Gupta (1969). 
For the use of deterministic signals c.f. 
Strobel (1968), Gitt (1969) 1 Wilfert (1969), 
From the point of view of applications it seems 
highly desirable to use techniques which do not 
make strict limitations on the inputs. On the 
other hand if the input signals can be chosen 
how should this be done.? It has been shown by 
Îström and Bohlin (1965), Rström (1968), Aoki 
and Stal~y (!969) that the con~ition of P!!!f!: 
E!~E-!!f!E!E!~~ (of order n), 1,e, that the 
limits 

u -

and 

lim 
N-+"" 

I N - I u(k) 
N k•l 

exist and the matrix An defined by 

i,j•l,,,, ,n (3,2) 

is pos1t1ve definite, is sufficient to get con­
sistent estimates for least squares, maximum 
likelihoed and maximum likelibood in the spe­
cial case of white messurement errors. 

One might therefore perhaps dare to conjecture 
that a condition of this nature will be re­
quired in general, 

Apart from persistent excitation many applica­
tions will require that the output is kept 
within specified limits during the experiment. 
The problem of designing input signals, energy­
and time-constrained, which are optimal e.g. 
in the sense that they mlnimize the variances 
of the estimates, have been discussed by 
Levadi (1966), Aoki and Staley (1969). The same 
problem is also discussed in Rault et al. (1969~ 
It is closely related to the problem of optimal 
signal design in cammunication theory; see e.g. 
Middleton ( 1960) 

The danger of identifying systems under closed 
loop control also deserves to be emphasized, 
Consider the classical example of Fig. 3.1. 

n 

u 
HP 

y 

I 
HR 

I 
l I 

Fig 3 .1 

An attempt to identify ~ from measurements of 
u and y will give 

.... I 
H =­

p HR 

i.e. the inverse of the transfer f unction of 
the feedback. In industrial applications the 
feedback can enter in very subtle ways e.g. 
through the action of an operator who makes 
occasional adjustments, Fisher (1965) has shown 
the interesting result that the process may be 
identified if the feedback is made nonlinear. 

The Criterion 

It was mentioned in Sectien 2 that the crite­
rion is often a minimization of a scalar loss 
function. The loss function is chosen ad hoc 
when the identification problem is formulated 
as an optimization problem and it is a conse­
quence of ether assumptions when the problem is 
formulated as an estimation problem. 

Mostly the criterion is expreseed as a func­
tional of an error e.g. 

T 

V(y,ym) • J e2(t)dt 

0 

(3.3) 



where y is the process output, y the model 
output and e the error; y, y an~ e are consi­
dered as functions defined oW (O,T). Notice 
that the criterion (3.3) can be interpreted as 
a least squares criterion for the error e, 
The case 

e = (3.4) 

is referred to as the ~~!E~!-~!!~!· It is the 
natura! definition when the only disturbances 
are white noise errors in the measurement of 
the output. 
The case 

- u 
m 

(3.5) 

where M(u) denotes the outyut of the model when 
the input is u and Urn = Mr (ym) denotes the 
input of the model which produces the output 
Ym• is called the !~E~!-=!!~!· The notatien M-I 
implies the assumption that the model is inver-
S!Ël!• roughly speaking that it is always _____ _ 
possible to find a unique input which produces 
a given output, Rigoreus definitions of the 
concept of invertibility are discussed by 
Brockett and Mesarovic ( 1965), Silverman ( 1969), 
Sain and Massey (1969). From the point of view 
of estimation theory the criterion (3.4) with 
the error defined as the input error (3,5) 
would be the natural criterion if the distur­
bances are white noise entering at the system 
input. 

In a more general case the error can be defined 
as 

-I 
e • M

2 
(y) - M

1 
(u) (3. 6) 

where M2 represents an invertible model. This 
type of model and error (3.6) are referred to 
as S!~!!!l!~~~-~~~=1 and s=~=!!l!~=~~=!!2!; 
Eykhoff (1963), A special case of the gene-
talized error is the "equation error" intro­
duced by Potts, Ornstein and Clymer (1961), 
Fig. 3,2 gires an interpretation of the differ­
ent error concepts in terms of a block diagram. 

Computational Aspects 

All solutions to parametrie identification pro­
blems consist of finding the extremum of the 
loss function V considered as a function of the 
parameters a. The minimization can be done in 
many different ways e.g. 

- as a ".2~!:!h2.E" approach, i.e. solving the 
relations that have to be satisfied for the 
extremum of the function or functional or: 

- as an !.E!!!.E!!! approach, i.e. by some type 
of hillclimbing, In this case numerous tech­
niques are available, e.g. 
a) cyclic adjustment of the parameters one­

-by-one, a,o, Southweli relaxation metbod 
b). gradient method: 

S(i+I) • a{i) - r va{a<i~ ~ r > o 
r • constant 

'n 

u proecu y 

~ _,.J model L y. 
I I --Tc ) a 

output error 

u 

• 

b) 

u 

c) 

process 

J!- J 1nverse 
lmodel 

L - J 

e 
input error 

procc" 

e 
gcntralized error 

Fig 3.2 
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y 

n 

c) steepest descent method: 
S(i+I) = S(i) - r(i) v8(a<i~ r(i) > o 
r(i) chosen such that V(S) is minimum in 
the direction of the gradient, 

d) Newton's method: 
S(i+l) • S(i) - r(i) v8 (aCi~ 
r(i) = [v88 (aCi))] -I 

e) conjugate gradient method: 
S{i+l) a S(i) - r(i)s(i) 

llva (a<i>) 11 2 

llv8 (a<i-l)) 11 2 
s (i-1) 

r (i) > o, minimizes v (a (i) - r s (i)) 

~ VB is used as a shorthand notatien 
gfadient of V with respect to a: 

V dsf [ av av J 1 

a 'ilav • aai'"''aam 

for the 



This method, applied to a positive definite 
quadratic function of n variables, can 
reach the minimum in at most n steps. 

In these me_thods it has not been taken into 
account that in the practice of estimation 
the determination of the gradient is degraded 
through the stochastic aspects of the pro­
blem. A metbod which conaiders this uncer­
tainty in the gradient-deteriDination is the: 

f) stochastic approximation method: 
8(i+l) = 8(i) - r(i) v8(8(i)) 

where r(i) has to fulfill the conditions: 

r (i)~ o 
co 

l r 2 (i) < co and 
i• I 

n 
L r(i)~ co 

i= I 
as n~ co 

As ah example may be used: r(i) = I/i 

A good survey of optimization techniques is 
found inthebook by Wilde (1964). See also 
Bekey and McGee (1964). 

4. Choice of Model Structure 

The choice of model structure is one of the ba­
sic ingredients in the formulation of the iden­
tification problem. The choice will greatly 
influence the character of the identification 
problem, such as: the way in which the results 
of the identification can be used in subsequent 
operations, the computational effort, the possi­
bility to get unique solutions etc. There are 
very few general results available with regard 
to the choice of structures. 
In this section we will first discuss the con­
cept of linearity-in-the-parameters and we will 
then discuss the structure of linear systems. 

The Concept of Linearity-in-the-Parameters 

In control theory the distinction between 
linee.r and non-linear is usually based on the 
dynamic behaviour, i.e. the relation between 
~h~-~~E~~~~~~-!~~-~h~-i~~~E~~~~~~-;i~_Y!!: 
~ables. For parameter estimation another dis-
tin~tion between linearity and nonlinearity is 
of as much importance viz. with respect to the 
relation between the ~~E~~g~~~-Y!!!!21~!-~g 
~h~-P!!~~~!!• Apparently, these two notions 
of linearity have no immediate relation as can 
be seen from the following examples. 
We assume a process with input signal u and 
output signal y. Then the "model" may be chosen 
to form an "error" e between process and model 
output in . the following way: 

MODEL 

Process in-the-parameters: 

linear nonlinear 

~ ~ u 
.~ 5 QJ e•y-w-y- --

y+ay•u d e•y+ay-u D+.a 
m ·.-l •.-l ~+aw-u ~ - ----· ~] 

y+ay3•u 
~ 

e•y+ay3-u e•y-w-y-(7[u, a] 
"' QJ 

d CU 
,.Q 0 QJ W+aw3•u d d 

•.-l 
~ 

Q 

The two different uses of the terms linear and 
· nonlinear may cause some confusion, This is due 
to the mixing of concepts from the fields of 
system theory and regression analysis. ~ 
Henceforth we will use the term "linear" for the 
dynamic behaviour and use "linear-in-the-para­
meters" for the other type. 
In conneetion with estimation schemes the great 
importance of linearity-in-the-parameters will 
become clear. Therefore it pays to try to find 
transformations of the variables to obtain such 
a linearity if possible, Some simple examples 
may illustrate this. 

a2x2 + xl 
z =-----

alxlx2 

a 
~"' e· xl = ui; x2 .. u~ al p al 

reciprocal transformation 

al a2 
=* y=8o+8lu1+82u2 z .. cx1 x2 

log z y log c = 8 
0 

log XI .. UI al 81 
log x2 = u2 a2 = 82 

logarithmic transformation 

Such nonlinear expressions, that can be made 
linear-in-the-parameters through transformation, 
are called !~~!!~~!~!1!~_!!~~!!• If such a 
linearization is not possible then !~~!!~!!~!!!X 
~~~!!~~!! is used. It may pay to make transfor­
mations even if the system is intrinsically non­
linear; see e.g. Diskind (1969). 

A typical example is the identification of a 
discrete-time linear system when the output is 
measured with white measurement noise, The re­
presentation of the system by the coefficients 
of the pulse transfer function leads to a non­
linear regression problem while the representa­
tion of the model by coefficients of a general­
ized model or by the ordinates of the weighting 
function leads to an estimation problem which 
is "linear-in-the-parameters". 

~ Note that also the term "order" may cause 
confusion. In regression analysis this term 
refers to the highest degree of the indepen­
dent variable: 

y• 8 
0 
+ 81 u 1 +n 

model of the 
first order 

mode 1 .of the 
second order 



Representation of Linear Systems 

Linear .time-invariant systems can be represen-
. ted in many different ways: by input-output 
descriptions such as impulse response or trans­
fer function H or by the state model S(A,B,C,D) 
defined by 

dx 
dt Ax + Bu 

y = Cx + Du 

where x is an n-vector, the input u is a 
p-vector and the output y is an r-vector. 

(4. I) 

It is wellknown that the systems S(A,B,C,D) and 
S(TAr-1, TB, c~l, D) where T is a nonsingular 
matrix are equivalent in the sense that they 
have the same input-output relation. 
It is also easy to verify that the systems 
S(A,B,C,D) and S(À,~,è,fi) are equivalent in the 
sense that they have the same input-output re­
lation if 

D D 

k --k­
CA B = CA B 

(4.2) 
k = O,I, ••• ,n 

The relations between the different represen­
tations were clarified by Kalrnan's work; see 
e.g. Kalman (1963). The impulse response and 
the transfer function only represent the part 
of the system S which is completely controll­
able, It is thus clear that only the completely 
controllable and completely observable part of 
a state model S(A,B,C,D) can be determined from 
input-output measurements. The impulse response 
and the transfer function are easily obtained 

. from the state description, The problem of 
determining a state model from the impulse res­
ponse is more subtle, even if we disregard the · 
fact that only the controllable and observable 
subsystem can be determined from the impulse 
response, The problem of assigning a state 
model of the lowest possible order which has a 
given impulse response has been solved by Ho 
and Kalman ( 1966),. See also Kalman, Falb and 
Arbib (1969), Again the solution is not unique. 
The model S(A,B,C,D) contains 

2 N1 • n + np + nr + pr (4.3) 

parameters, The fact that the input-output rela-
tion is invariant under a linear transformation 
of the state variables implies that all Nt para-
meters cannot be determined from input-ou put 
measurements, To obtain unique solutions as 
well as to be able to construct efficient algo-
rithms it is therefore of great interest to 
find representations of the system which con-
tain the smallest number of parameter i.e. 
E!~~~!~!l_!~E!~!~~!!E!~~!· 

Canonical Forma for Linear De terministic S~s-
tema 

<ànonical forms for linear systems are discuseed 
_e.g. by Kalman et al.(l963). When the matrix A 
has distinct eigenvalues canonical forma can be 
obtained as follows. By a suitable choice of 

coordinates the matrix A can be brought to 
diagonal form. 

À! 0 0 SI I 612 ..... s lp 

dx 0 À2 .• . •• 0 621 622 s2p 
dt 

x+ u 

0 0 ... À n s nl 6n2 . .. s np 

(4.4) 

yl I y12". Yin dil dl2 dip 

Y21 y 22 • .•• y2n d21 d22 d2p 
y x+ u 

Yrl Y r2 '.'' yrn d rl d ... d r2 rp 

This representation contains n + np + nr + pr 
parameters. n of these are redundant since all 
state variables can be scaled without affecting 
the input-output relations, The input-output 
relation can thus be characterized by 

N2 = n(p+r) + pr . (4.5) 

parameters, Since the system is completely 
controllable and observable there is at least 
one non zero element in each row of the B 
matrix and of each column of the C matrix, 
The redundancy in (4.4) can thus be reduced by 
imposing conditions like 

max s .. = I i 1,2, ... ,n (4. 6) 
l.J j 

ï Is .. 1 i 1,2, ••• ,n (4. 7) 
j l.J 

or similar conditions on the C-matrix. 
When the matrix A has multiple eigenvalues the 
problem of finding a minimal parameter repre­
sentation is much more complex, If A is E~El!E 
(i.e •. there exist a vector b such that the 
veetors b, Ah, A2b, ••• , An-lb span the n-dimen­
sional space) the matrix can be transformed to 
companion form and a minimal parameter repre­
sentation is then given by 

-al 0 ••• 0 bil b12 blp 
-a2 0 0 b21 1:>22 b2p 

dx - .. x + u dt 

-a n-1 0 0 I b n-1,1 bn-1,2 bn-1, 
-a n 0 0 0 b nl bn2 bnp 

(4. 8) 

cl! c12 cln dil dl2 d 
- lp 

c21 c22 c2n d21 d22 d2p 
y = x + u 

c rl cr2 ... crn drl dr2 d rp 



where n additional conditions, e.g. of the form 
(4.6) or (4.7) are imposed on the elements of 
the matrices B and c. 
In the case of processes with one output the 
additional conditions are conveniently intro­
duced by specifying all elements of the vector 
C e.g. C

1 = [1 0 ••• ü]. The canonical form 
then becomes 

Y(s) 
n-1 n-2 r: b 11 s + b21 s + ••• + b 

• L d I I + ___:_..:..__n----=n..:..-......,...1 _____ ..:.n:..!.l J U I ( s) + 
s + a 1s + ••• + an 

b n-1 + b n-2 

[ 
lps 2ps +. ·. ,+ b J 

+ ••• + dip+ n n-1 
s + a

1
s 

np U (s) 
+ ••• +a P 

n 

(4. 9) 

where Y and U. denote the Laplace transfarms of 
y and u. , A cänonical representation of a pro­
cess ofLthe n ~h order with p inputs and one 
output can th~s be written as 

dn dn-1 
~+aE..__l+ I I ••• + any 
dtn dtn-

+ 
dnu · 

b' I u 
1
] + , • , + [b' __ P + 

n op dtn 

n 

L ' d u, 
bi--+, •• + 

o dtn 

••• + b' u J np p 

(4. 10) 

An analogous form for systems with several out­
puts is 

n· 

[ 
d u, 

B,--+ ••• + 
o dtn 

dnu 
+ B 1u 1J +. •,. + [B __e + ••• + B u ' J 

n op dtn np p 

(4, IJ) 

This form was introduced by Koepcke (1963), It 
has been used among others by Wong et al. (1968) 
and Rowe ( 1968), 
The determination óf the order of the process 
(4,11), which in general is different from n, 
as well as the reduction of (4,11) for state' 
form has been done by Tuel (1966). Canonical 
forma for linear multivariable systems have 
also been studied by Luenberger (1967), The 
simplification of large linear dynamic process­
es has been treated by several authot:s; the 
reader may consult Davison (1968) for an ap­
proach in the time domain, Analogous results 
hold for discrete time systems. 
When the matrix A has multiple eigenvalues and 
is not cyclic it is not clear what a "minimal 
parameter representation" means, The matrix A 
can of course always be transformed to Jordan 
canonical form, Since the eigenvalues of A are 
not distinct the matrix A can strictly speaking 
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be characterized by fewer than n parameters. 
The one's in the superdiagonal of the Jordan 
form can, however, be arranged in many diffeant 
ways depending on the · internal couplings which 
leads to many different structures. 

Canonical forms for linear stochastic systems 

We will now discuss canonical farms for sto­
chastic systems. To avoid the technica! diffi­
culties associated with continuous-time white 
noise we will present the results for discrete­
time systems, The analogous results are, how­
ever, true also for continuous-time systems. 
Consider the system 

x(k+l) ~x(k) + ru(k) + v(k) 
(4. 12) 

y(k) 9x(k) + Du(k) + e(k) 

where k takes integer values. The state vector 
x, the input u and the output y have dimensions 
n, pand r; {v(k)} and {e(k)} are sequences of 
independent equally-distributed random veetors 
w~th zero mean ~alues and.covariance R1 and R2• 
SLnce the covarLance matrLces are symmetrie 
the model (4.12) contains 

2 I I n + np + nr + pr + 2n(n+l) + 2 r(r+l) 

3 I r I 
n(2n + 2 + P + r) + r(p + 2 + 2) 

(4.13) 

parameters. Two modelsof the type (4.12) are 
said to be equivalent if: (i) their input-out­
put relations are the same when e = 0 and v = 0 
and (ii) the stochastic properties of the out­
puts are the same when u = 0. The parameters of 
~. r and e can be reduced by the techniques 
applied previously. . 
It still remains to reduce the parameters re­
presenting the disturbances. This is accomr 
plished e.g. by the Kalman filtering theorem. 
It follows from this that the output process 
can be represented as 

x(k+l) = ~x(k) + fu(k) + KE(k) 

y(k) = ex(k) + nu(k) + E(k) 
(4,14) 

where i(k) denotes the conditional mean of x(k) 
given y(k-1), y(k-2), ••• , and {E(k)} is a se­
quence of independent equally distributed ran­
dom variables with zero mean values and cova­
riance R, 
The single output version of the model (4.14) 
was used in Rström (1965). Kailath (1968) calls 
(4, 14) an ~!::!~Y!.E!~!:L!:~E!:~~~!:.E!.H-2!: of the 
Rrocess. A detailed discussion is given in 
Äström (1970). The model (4.14) is also used by 
Mehra (I 969). 
Notice that if the model (4.14) is known the 
steady state filtering and estimation problems 
are very easy to solve. Since K is the filter 
gain it is not necessary to solve any Riccati 
equation. Also notice that the state of the 
model (4.14) has physical interpretation as the 



conditional mean of the state of (4.12). 

If ~ is chosen to be in diagonal form and if 
conditions such as (4.6) are introduced on r 
and e the model (4.14) is a canonical represen­
tation which contains 

r I N4 = n(p + 2r) + r(p + ~ + 2) 

parameters. 

(4. 15) 

For systems with one output, where the addition­
al conditions are as e' = [I 0 ••• oJ, the equa­
tion (4.14) then reduces to 

+ ••• + b 1 

1 u 1 (k-nY + ••• +rb 1 u (k) + • • • + n !.1 L2 op p . 

+ b 1 u (k-n)] + e: (k) + c 1 e: (k- I) + • • • + c e: (k-n) np p n 

(4.16) 

By introducing the shift operator q defined by 

qy(k) - y(k+l) (4.17) 

the polynomials 

n n-1 A(q) K q + a 1q + 

B. (q) • bI n + bI n-1 + 
1. Oiq liq 

n n-1 C(q) • q + c 1q + ••• 

+ a 
n 

i 

+ c 
n 

+ bi . 
nl. 

1,2, ... ,p 

(4. 18) 

and the corresponding reciprocal polynomials 

A•(q) • qnA(q-1) 

• n -1 B. (q) • q B.(q ) 
l. l. . 

(4.19) 

the equation (4.16) can be written as 

or 

• -1 ~ • -1 111 -1 
A(q )y(k}= 2. B.(q )u.(k)+C(q )e:(k) 

i .. J l. l. . 

p 

A(q)y(k) - I 
i• I 

B.(q)u(k) + C(q)e:(k) 
l. 

(4, 16 I) 

(4, 16 I I) 

This canonical form of an n-th order system was 
introduced in Rström, Bohlin and Wensmark (1965) 
and has since then been used extensively. The 
corresponding form for multivariable systems is 
obtained by interpreting y and u. as veetors and 
A,B. and C as polynomials whose ~oefficients are 
matfices. Such models have been discussed by 
Eaton (1967), Kashyap (1970) and Rowe (1968). 

·The following canonical form 

+ ••• + 

B (q) C(q) 

+ -fiiT u (k) + A(q) e:(t) 
p q p 

(4.20) 

has been used by Bohlin (1968) as an alterna­
tiveto (4.16). 
The choice of model structure can greatly in­
fluence the amount of work required to solve a 
particular problem. We illustrate this by: 

A filtering example, Assume that the final goal 
of the identification is to design a predietor 
using Kalman filtering. If the process is 
modeled by 

x(t+ I) ~x(k) + v(k) 
(4.21) 

y(k) ex(k) + e(k) 

where {e(k)} and {v(k)} are discrete-time white 
noise with covariances R and R2, the likeli­
hood function for the estimation problem can be 
written as 

- log L =..!. Î [v 1 (k)R1-
1v(k) + e 1 (k)R2- 1 e(k~+ 

2 k=l 

(4.22) 

where the system equations are considered as 
constraints. The evaluation of gradients of the 
loss function leads to two point boundary 
value problems. Also when the identification is 
done the solution of the Kalman filtering pro­
blem requires the solution of a Riccati equa­
tion. 
Assume instead that the process is identified 
using the structure 

z(k+l) = ~z(k) + Ke:(k) 
(4.23) 

y(k) • 0z(k) + e:(k) 

the likelihoed function then becomes 

n 
- log L ... - l e: 1 (k)R-I e:(k) + .!!2 log det R 

2 k.;.l 
(4.24) 

The evaluation of gradients of the loss func­
tion in this case is done simply as an initial 
value problem. When the identification is done 
the steady state Kalman filter is simply given 
by 

x (k+ I ) • ~x (k) + K [Y (k) - 02 (k) J (4.25) 

Hence if the model with the structure (4.23) is 
known there is no need to solve a Riccati equa­
tion in order to obtain the steady state Kalman 
filter. 



5. Identification of Linear Systems 

Linear systems naturally repreaent the most ex­
tensively developed area in the field of sys­
tems identification. In this sectien we will 
consider linear systems as well as "linear en­
vironments", i.e. environments that can be 
characterized by linear stochastic models. In 
most control problems the pro~erties of the 
environment will be just as important as the 
system dynamics, because it is the presence of 
disturbances that creates a control problem in 
the first place. 
To formulate the identification problem using 
the framewerk of sectien 2 the class of models 
S, the inputs U and the criterion must be 
defined, These problems were discussed in sec-_ 
tions 3 and 4. If classica! design techniques 
are to be used the model can be characterized 
by a transfer function or by an impulse res­
ponse. Many recently developed design methods 
will however require a state model i.e. a para­
metrie model. 

Several probieros naturally arise: 

o Suppose the impulse response is desired. 
Should this be identified directly or is it 
"better" to identify a parametrie model and 
then compute the impulse response? 

o Assume that a parametrie model is desired, 
Should this be fitted directly or is it 
"better" to first determine the impulse res­
p~nse and then fit a parametrie model to that? 

o Since a parametrie model contains the order 
of the system explicitly what happens if the 
wrong order is assumed in the problem formu­
lation? 

There are not yet any general answers to these 
problems, Special cases have been investigated 
by Gustavsson (1969) in conneetion with identi­
fication of nuclear reactor and distillation 
tower dynamics as well as on simulated data. 
Since correlation techniques, their properties 
and applications by now are very well known we 
wi11 not discuss these here, Let it suffice to 
mention the recent papers by Rake (1968), 
Welfonder (1969), Buchta (1969), Hayashi (1969), 
Reid (1969 a,b), Stassen (1969). Instead we will 
concentrate on the more recent results on the 
identification of parametrie models. 

Least Squares Identification of a Parametric ' 
Model. 

Consicier a linear, time invariant, discrete­
time model with one input and one output, A 
canonical form for the model is 

y (k) + a 1y (k-1) + ,,, +a y (k-n) m m nm 

(5.1) 

where u is the input and y the output of the 
model, m 
Using the notatien introduced in sectien 4 the 
model (5,1) can be written as 
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B(q)u(k) (5. I I) 

or 

* -1 * -1 A (q )y (k) = B (q )u(k) 
m 

(5. I I I) 

Let the criterion be chosen as to minimize the 
loss function (2.1) i.e. 

N+n 
V = V(y,ym) = L e

2
(k) 

k=n 
(5.2) 

where e is the generalized error defined by 

* -1 [ .1 e(k) = A (q ) y(k) - ym(k)J 

or (5.3) 
• -1 • -1 

e(k) = A (q )y(k)-B (q )u(k) 

and the last equality fellows from (5,1 11
), 

The main reasen for choosing this particular 
criterion is that the error e is linear~in-the­
parameters a. and b .• The function V is conse­
quently quadfatic afid it is easy to find its 
minimum analytically. Notice that (5.3) i~plies 

y(k) + a 1y(k-1) + ••• + any(k-n) = 
(5,4) 

The quant~t~es e(k) are also ca1led residuals 
or ~s~~~i~~-~!!~!~· The criterion cs:z)-Is __ _ 
cailed minimization of "equation error". 
In fig. 5.1 we give a block diagram which il­
lustrates how the generalized error can be ob­
tained from the process inputs and outputs and 
the model parameters a. and b. in the least 

~ ~ squares methods, 

U(k) 
process 

a) 

",(k) 

n(k) 

u<k> process 

b) 

e(k) 

Fig 5.1 



To find the minimum of the lossfunction V we 
introduce 

y = 

·:.:.y(n) 

1-y(n+1) 

y(n+1) 

y(n+2) 

y(n+N) 

-y(n-1) 

-y(n) 

, , .-y(1) , u(n) u(n-1),, ,u(I) 
I 

, , .-y(2)
1 
u(n+1) u(n) , , ,u(2) 

I 

~y(N+n-1) -y(N+n-2),,,-y(N) iU(N+n-1) , , ,u(N) 

(5. 5) 

equation defining the error (5,3) then be-

e•y-4l8 (5, 6) 

The minirum of the loss function is found through 
V8V"' 0, If [~'4l] is not singular then this mi­
nimum is obtained for a 8 a: 

(5.7) 

lt is thus a simple matter to determine the 
least squares estimate, Thematrices ~'y and 4l'4l 
are given in (5,8) and (5.9). 
For literature on matrix inversion the reader is 
referred to Westlake (1968), 

--·-----·- .. ·--- --
___ j 

4l'y· = 

N+n 
- I y(k) y(k-1) 
k=n+1 

N+n 
- I y(k) y(k-2) 
k=n+1 

N+.n 
- L y(k) y(k-n) 
k=n+1 

N+n 
L y(k) u(k-1) 

k=n+1 

N+n 
L y(k) u(k-2) 

k=n+1 

N+n 
L y(k) u(k-n) 

k=n+1 

N+n-1 N+n-1 

(5. 8) 

(5,9) 

N+n-1 2 . I y (k) 

N+n-1 N+n-1 , N+n-1 
I y(k)y(k-1) ... I y(k)y(k-n+o: -I y(k)u(k) -I y(k)u(k-1),,, -I y(k)u(k-n+1) 

, k•n 

I 
I 

I 

=i 

k•n k=n k•n 
I 

kan k•n 

N+n-2 2 I y <k> 
k•n-1 

I 
N+n-2 N+n-2 

.. . I y(k)y(k-n+2): -I y(k)u4&1) 
N+n-2 
-I y(k)u(k) 

N+n-2 
,,, -I y(k)u(k-n+2) 

k•n-1 k•n-1 k•n-1 k=n-1 
I 

I 
N N N 

l(k) -I y(k)u~n-0 -I y(k)u(k+n-~ ... -I y(k)u(k) 
k•1 k•1 k•1 

----~------------------
1 N+n-1 

2 
N+n-1 N+n-1 

I I u (k) I u(k)u(k-1) .. , I u(k)u(k-n+1) 
I k•n k•n k•n 
I 
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N+n-2 2 I u <k> 
k•n-1 

N+n-2 
· • • I u(k)u(k-n+2) 

k•n-1 

N 
I u2(k) 

k•1 



Notice that the technique of this section can 
immediately be applied to the identification of 
nonlinear processes which are linear-in-the­
-parameters e.g. 

y (k) + ay (k- I) 2 b 1u(k-I) + b
2
u (k-1) 

(5, 10) 

A Probabilistic Interpretation. 

Consicier the least squares identification pro­
blem which has just been discussed, Assume 
that it is of interest to assign accuracies to 
the parameter estimates as well as to find 
methods to determine the order of the system if 
it is not known. Such questions can be answered 
by imbedding the problem in a probabilistic 
framework by making suitable assumptions on the 
residuals, We have e.g.; 

Theorem, Assume that the input-output data is 
generated by (5,4) where the residuals e(k) are 
independent, equally distributed with zero 
mean. Assume that the moments of e(k) of fourth 
order exist and are finite, Let all the roots 
of 

have magnitudes less than one. Assume that the 
limi ts 

N 
lim...!. L u(k) and 
N..- N k=I 

N 
lim...!. L u(k) u(k+i) = R (i) 
N..- N k= I u 

exist and let the matrix A defined by 

A = {a .. = R (i-j)} 
~J u 

i,j = 1,2, ... ,n 

(5. I I) 
be positiye definite, The least squares 
estimate S then converges to the true para­
meters b in mean square as N..- , 

The, special case of this theorem when b.=O for 
all i, which correspond to the identifiêation 
of the parameters in an autoregression, was 
proven by Mann and Wald (1943). The extension 
to tne case with b.#O is given in Rström (1968), 

~ 

It is simple to find an expression for the 
accuracy of a in this case: 

cov lêJ = a 2 [c~>'c!>J- 1 

where a 2 is the varianee of e(t), 
Estimates of the variances of the parameter 
estimates are obtained from the diagonal ele­
ments of this matrix. 

If it is also assumed that the residuals are 
gaussian we find that the least squares esti­
mate can be interpreted as the maximum likeli­
hood estimate, i.e. we obtain the loss function 
(5.2) in a natural way. 
It has been shown that the estimate S is a­
symptotically normal with mean S and covariance 
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a2
[<t> 1 ct>]- 1, Notice that this does !:!:!:?! follow 

from the general properties of the maximum 
likelibood estimate since they are derived 
under the assumption Of independent experi­
ments. 

In practice the order of the system is seldom 
known. It can also be demonstrated that serious 
errors can be obtained if a model of the wrong 
order is used. It is therefore important to 
have some methods available to determine the 
order of the model, i.e. we consider S as the 
class of linear roodels with arbitrary order. 

To determine the order of the system we can 
fit least squares rr-.odets of different orders 
and analyse the reduction of the loss function, 

To test if the loss function is significantly 
reduced when the number of parameters is in­
creased fr~m n 1 to n2 we can use the following 
test quant~ty 

t 
v1 - v2 N- n 2 

V 2 n2 - n I 
(5. 12) 

which is asymptotically x2 if the model resi­
duals are gaussian. 
The idea to view the test of order as a 
decision problem has been discussed by 
Anderson (1962), It is also a standard tool in 
regression analysis, 
Notice that the least squares method also in­
cludes parametrie time series analysis in the 
sense of fitting an autoregression. This has 
been discussed by Wold (1938) and Whittle 
(1963), Recent applications to EEG analysis 
have been given by Gersch (1969), 

Using the probabilistic framework we can also 
give another interpretation of the least 
squares methods in terms of the general defi­
nition of an identification problem given in 
section 3. First observe that in the general­
ized error defined by (5.3) another y can be 
used: m 

e(k) A*(q- 1)y(k) - B*(q- 1)u(k) = 

= y(k) - ym(k) 

Consequently: 

ym(k) = y(kik-1) = [1-A*(q-I)Jy(k) + 

(5. 13) 

* -1 + B (q )u(k) = -a
1
y(k-l) - - a y(k-r1)+ 

n 

(5. 14) 

Notice that y (k) = y(k!k-1) has a physical 
interpretatioW as the best linear mean squares 
predietor of y(k) basedon y(k-1), y(k-2), ,,, 
for the system (5.4). The generalized error 
(5.3) can thus be interpreted as the difference 
between the actual output at time k and its 
prediction using the model (5.14). 
The least squares procedure can thus be inter­
preted as the problem of finding the parameters 
for the (prediction) model (5,14) in such a way 



that the criterion 

N 
I [y<k) - y (k)' 2 

k=l m ...; 
(5. 15) 

is as smal! as possible. Compare with the block 
diagram of fig. 5.2. This interpretation is use­
ful because it can be extended to much more 
general cases. The interpretation can also be 
used in situations where there are no inputs 

' e.g. in time series analysis. 

u (k) 
process 

+ t (J<) 

Fig 5,2 

Comparison with Correlation Methods. 

Now we will compare the least squares method 
with the correlation technique for determining 
the impulse response. When determiningprocess 
dynamics for a single-input single-output system 
using correlation methods the following quanti­
ties are computed. 

I 
N-i 

R (i) -~I u - N-~ 
k=l 

N-i 
R (i) I 

- =-r I y - N-~ 
k=l 

I R (0) 
y 

R (I) 
y 

R (0) 
y 

u(k) u(k+i) 

~ y(k) y(k+i) I 
I 

' 

R (n-1) -R (O) 
Y . yu 

R (n-2) 1-R (I) 
Y . yu ...... 

I 

(5. I 6) 

-R (I) 
uy 

-R (O) 
yu 

N-i 
R (i) = N-i I y (k) u(k+i) 

~ 
yu 

k=l 
(5. 16) 

N-i 
R (i) I I u (k) y(k+i) = =--r uy N-~ k=l 

Gomparing with the least squares identification 
of process dynamics we find that the elements of 
the mat~ices 4> 1 4> and 4> 'y of the least squares 
procedure are essentially correlations or cross­
correlations. Neglecting terms in the beginning 
and end of the series we find ~ 

4>'y 

: -R ( 1) 
i y 

I-Ry(2) 

i . 
/-R (n) I 
. y 

, - R - ~~ 
uy 

R (2) uy ! 

. ! 

. I 
R (n) ; 

uy _; 

(5. 18) 

Hence if a correlation analysis is performed, 
it is a simple matter to calculate the least 
squares estimate by forming thematrices 4> ' ~ 
and 4>'y from the values of the sample covar~an­
ce functions and solving the least squares 
equation, Since the order of the sys~em is sel­
dom known apriori it is often conven~ent to 
compute the least squares estimate re7ursively 
using the test of order we have descr~bed pre­
viously. 

... -R (n-1~ uy 

-R (n-2) uy 

R (0) 
y 

-R (n-1)-R (n-2) .•• -R (0) 
1 yu yu yu 

-l ·-· ·-· --
1 R (O) R (I) 

u u 

i 
I 

l R (0) 
u 

R (n-1) 
u 

R (n-2) 
u 

(5. 17) 

R (O) 
u 
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Correlated Residuals 

Hany of the nice properties of the least squares 
methoq depend critically upon the assumption 
that the residuals {e(k)} are uncorrelated. It 
is easy to find real-life examples where this 
assumption does not hold. 

E~ample. Consider a noise-free first order sys­
tem 

x(k+l) + ax(k) = bu(k) 

Assume that x is observed with independent 
maasurement errors (additive noise) i.e: 

y(k) = x(k) + n(k) 

then 

y(k+l) + ay(k) = bu(k) + n(k+l) + an(k) 

We thus get a system similar to (5.4) but with 
correlated residuals. 

When the resiquals are correlated the . least 
squares estimate will be biased. The bias is 
given by 

E(ê-b) = [~(~~~~-I E(~'e) (5. 19) 

where S is the estimate and b is the true value 
of the parameter. The reasen for this bias can 
be indicated as follows; c.f. Fig. 5.3. 

u(k) yOd 
proc~ss 

Fig.S.3 

The estimate results from a minimization of the 
lossfunction 

N 
e 2(k) V = I 

k .. 1 

Necessary conditions are: 

av N 

11 :::::. I e(k) u(k-1) 0 
k=1 

(5.20) 

av N 

ää = I e(k) y(k-1) = 0 
k=1 

(5. 21) 
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In (5,20) tte additive noise n is only present 
in e and not in u; consequently it does not af­
fect the expectation of 6. In (5.21) the &dditive 
noise is present both in e and y; this l~ads to 
a term 

2 n (k-1) 

which does cause a bias of a. 
To see how this works out consider an ~~ample. 

Example. Assume that the .process is actually 
described by the model 

b a 
y(k+I)+0,5 y(k) 1,0 u(k)+n(k+I)+O,I n(k) 

where {n(k)} is a sequence of independent normal 
(0,1) random variables, but that the system is 
identified using the least squares method und.er 
the assumption that the residuals are uncorre­
lated. Below we give a typical result obtained 
from 500 pairs of inputs and outputs 

process 
estimates parameter 

a = 0,5 a 0,643..: 0,029 
A 

b I, 0 s 1,018 + 0,062 

We are apparently in a very bad situation; not 
only is the estimate & wrong but we have aJso a 
great deal of confidence in the wrorg result. 
(The true value 0.500 deviates from the estimate 
with about Sa). 

The correlation of the residuals can thus easily 
lead to wrong conclusions. Several techniques :: 
have been suggested to deal wi th correlated re- ' 
siduals, viz: 

a) repeated least squares 
b) generalized least squares 
c) the maximum likelihoed method 
d) instrumental variables 
e) Levin's method 

ad a) Repeated least squares. $uppose that we 
did not know the order of the system discussed 
in the previous examples, It would then be na­
tural to continue the least squares procedure 
and to test the order of the system, The ~esults 
for the particular example are shown in Table 
5.1. We thus find that the test will indicate 
that the system is of fifth order 

• -1 • -1 
A (q ) y(k) = B (q ) u(k) + Àe(k) 

where 

A•(q- 1)=1+I,I9q- 1-o.aiq-2+o,s2q-3-o,35q-4+o,J2q-s 

B* (q - 1)., 1.08q - 1-0, 75q -z+0,48q - 3-o, 25q "'4+0, 12q -S 



. ll 0,643 

21 I, 015 

-0,377 

3 1, 118 

, -0,624 
i 

± 

± 

± 

± 

± 

± 

± 

a (a) s 
0,029 1.018 

0,045 1,086 

0,039 -0,520 
· - . - ----------- - ~ 

0,050 I, I 15 

0,068 -0,660 

0,043 0,263 

± a(S) Qn 
2 

xn-1 

±0,062 592.65 i 
+ --- -- - --- - -- 1------ -

±0,056 ' 469,64 1 50.94 

±0,072 • 

±0,055_ 447.25 9,67 

±0,078 : 

±0,076 t 0 :_17 8 

4 . I, 157 

' -0,756 

0,412 

---- ------· ---- ·· - - ---------
± 0,050 

± 0,074 

± 0,074 

-0,187 ± 0,044 

5 I, 185 ± 0, 051 

· -0,814 ± 0,077 

0,518 ± 0.083 

1,085 

-0.733 

0,409 

-0,146 

I,080 

-0.745 

0,475 

±0,055 

±0,078 

±0,083 

±0,076 

±0,054 

±0,078 

±0, 086 I 

-0,349 ± 0,076 -0,252 ±0,086 . 

426,40 9,43 

4I8,72 I 3,51 
i 

I 

I 
I 

i 

I 
0,123 ±0,076 

·. . ---~--:··------·-· 11 
416,56 0,99 

0,117 ± 0,044 

.. 6 ,1: I, I 9~ -~- ~--~~;·-· · ·· I. 079 ±0, 055 
I 
1-0,339 ± o.079 -o. 7 51 ±0,078 

i 0,555 ± 0,088 0,487 ±0,087 

j
-0.410 ± 0,088 -0,290 ±0,090 'li 

o. 208 ± o. 079 o. 183 ±0,087 ' 

_ ~~-o.o6t ± ?_._o45 ___ ~o.o~~ _±o~_o7~---·-- - 1 

7 ~ -:----j 
L ______ ___ -L- ---·--- _ ~~=--..:. o,s9 i 

Table 5, 1 

Dividing A by B we find 

-I 
1,08A(q ) = 1 + 0.495q-l 

B (q -1) 

. -2 -3 -4 -5 
w~t~ a rest R = 0.03q -0,07q +0,12q -0,06q 
Tak~ng the uncertainties of the coefficients a 
and S into account we find that the rest is net 
significantly different from zero, We thus find 
that the process can be described by 

y(k) = ~ u(k) + À e(k) 
q+0.5 A~(q-1)_ 

We can thus conclude that if we choose S 
not as the class of linear first order systems 
but as the class of linear systems of arbitrary 

' order it is at least possible to evereome the 
d~f~iculty of correlated residuals in the spe­
c~f~c example. This idea was mentioned briefly 
in iström (1967); it has, however, net been per­
sued in generaL 

ad b) Generalized least sguares, Another way to 
evereome the difficulty with correlated residuals 
is to use the method of generalized least squares. 
See e.g. Clarke (1967). 

The basic idea is as follows. Let the process 
be governed by 

• -1 
A (q ) y(k) * -I B (q ) u(k) 1- v(k) (5,22) 

where A* 
sequence 
that the 
Say that 

* and B are polynominals and {v(k)} a 
of correlated random variables. Suppose 
correlations of the residuals are known. 
they can be represented as 

• -1 
v(k) = G (q ) e(k) (5.23) 

where {e(k)} is a sequence of uncorrelated ran-
dom variables and G a pulse transfer function, 
The equation descrihing the process can be then 
written as 

* -1 A (q ) y(k) * -I • -I B (q ) u(k) + G (q ) e(k) 

(5.24) 

or 

(5. 25) 

where 

y(k) 1 y(k) 
c*(q-I) 

(5.26) 

ü (k) I u(k) 
c*<q-I) 

(5.27) 

Hence if the signals ü and y are considered as 
the inputs and outputs we have an ordinary 
least squares problem, Gompare with (5,3). We 
thus find that the generalized least squa~es 
can be interpreted as a least squares identifi­
cation problem where the criterion is cnosen as 
(5,2) with the generalized error defined as 

e(k) 

* -1 [ I J B ( q ) * _ I u (k) 
G (q ) . 

(5.28) 

Cernpare with the block diagram of Fig. 5.4. 
This sho~s how the generalized error can be ob­
tained from the process inputs and outputs and 
the model parameters a and S in the generalized 
least squares method, 

The correlation of the residuals and the pulse 
transfer function G are seldom known in practi~ 
ce. Clarke (1967) has proposed an iterative 
procedure to determine G which has been tested 
on simulated data as well as on practical mea­
surements (distillation column identification). 



n<k > 
y (k) 

---,---t~ process 

e(k) 

Fig. 5.4 

The procedure consists of the following steps. 

I, Make an ordinary least squares fit of the 
model 

• I * -1 A.(q-) y(k) = B.(q ) u(k) + v(k) 
J . J 

(~.29) 

2, Analyze the residuals v and fit an autore­
gression i.e. 

(5.30) 

where {e(k)} is discrete-time white noise. 

3, Filter the process inputs and outputs through 

• -1 
y(k) = D.(q ) y(k)j il(k) = 

J 

ll' -1 
D.(q ) u(k) 

J 

(5.31) 

4. Make a new least squares fit to thè filtered 
inputs and outputs and repeat from 2. 

This procedure has the drawback that there are 
no systematic rules for the choice of order of 
the model (5,29) and of the autoregression (5,30), 
Neither are any convergence proofs yet available, 
It bas, however, been shown to work very well 
with reasonable ad hoc choices of order in §!peci­
f~c examples, 

The following observation might also be worth­
while, Assume that the gèneralized least squares 
procedure will converge, Say A. ~A, B. + B a~d 
D. + D. We will then obtain J J 

J 

A•(q- 1) n•(q- 1) y(k) • s*(q- 1) n*(q- 1) u(k) + 

+ e(k) (5.32) 

i.e. a description of the process with uncorre­
lated residuale. It thus appears that the diffe­
rences between the repeated least squares and 
the generalized least squares are small. 

Another approach along these linea is the pro­
poaal by Steiglitz and McBride (1965), 
They use at the j-th iteration: 
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!I! -1 * -1 
D (q ) = Aj-l(q ) 

thus making a least squares fit of the model 

e(k) 

* -1 A. (q ) 

* -1 A. I (q ) 
r 

ll' -1 
B. (q ) 

y (k) - -;. --_-1:­
A. I (q ) 
r 

u(k) 

B. (q ) * -1 J 
[

y(k) - * _1 u(k) 
A. (q ) 

* -1 A. (q ) 

J 
* -1 A. I (q ) r 

(5.33) 

They also suggest that, after the convergence 
has proceeded far enough, this "generaliz~d * 
model" be switched to an ordinary model B./A. 
f or further impravement of the es timàte. ThenJ 
the additive noise does not cause biased esti­
mates, Near the optimum adjust~ent the nonli­
nearity-in-the-parameters of A hardly has a 
detrimental effect on the convergence, 

The nonlinearity-in-the-parameters can also be 
handled by means of quasilinearization, c,f, 
Schulz (1968). 

ad c) The maximum likelibood method, Another 
way to deal with the problem of correlated re­
siduals is to postulate a system with corre­
lated residuals e,g, a canonical representation 
of an n-th order system with one input and one 
output 

* -1 A (q )y(k) * I * -1 B (q- )u(k) + ÀC (q )e(k) 

(5.34) 

where u is the input, y the output and {e(k)} 
a sequence of independent normal (0,1) random 
variables, Ccmpare Section 4, The parameters of 
(5,34) can be determined using the method of 
maximum likelihood, 
The likelihood function L is given by 

I N 2 N N 
-log L(e, À) = - L e: (k) + 2 logÀ + 2log 2n 

2À
2 

k=l 

where 

(5.35) 

Att(q-l) y(k) - ·B*(q-l) u(k) 

(5,36) 

and {u(k), k = 1, 2, ••• , N} is the applied in­
put signaland {y(k), k = I, ~· ·:·• N} is t~e 
observed output signal. The l~kel~hood functlon 
is considered as a function of 9 and ÀjWhere 9 
is a vector whose components are the parameters 
a, a, ,,,, a, b

1
, b

2
, ,,,, b , c

1
, c

2
, ••• , 

c 1 an& the n iRitial conditionsnof ~5.36), 
N8tice that the logarithm of the likelihoed 
function is linear in the parameters a.and b. 

. ~ l 
but strongly nonlinear ln ei' 



Also notice that the optimization of L with res­
pect to a and À can be performed separately 
in the following way: First determine e such 
that the loss function 

V(9) (5.37) 

is minimal with respect to a. The optimization 
with respect to À can then be performed analy­
tically. We get 

--2 I . ( ) 
À = N m~n V e 

e 
(5.38) 

The maximum likelihoed estimate can be shown to 
have nice asymptotic properties. Estimates of 
the accurac~ of the parameters can also be pro­
vided. See Äström, Bohlin and Wensmark (1965), 
Kström and Bohlin (1965), Rogers and Steiglitz 
(1967), Panuska (1968), Bohlin (1968), Woo 
(1970), ~ström (1967a). 

The maximum likelihoed procedure can also be in­
terpreted as finding the coefficients of the 
predietien model 

(5.39) 

in such a way that the criterion 

N 
V • V(y,y ) = L [y(k) - ym(k)J 

2 

m k=l 

(5.40) 

is as small as possible, 

Notice that (5.34) can also be written as 

+ Àe(k) (5.41) 

This means that the maximum likelihoed method 
can also be interpr~ted as a generalized leasf 
squares method where the filter function G a~ 
is determined automatically. · 
It has been shown that predietors and minimal 
varianee control algorithms are easily deter­
mined from the model (5.34); c.f. Kström (1967, 
1970). The maximum likelihoed method has been 
applied extensively to industrial measurements, 
See e.g. Gustavsson (1969); in this paper co~ 
parisens with ether techniques such as eerrela­
tien methods and generalized . least squares are 
also given. The maximum likelihoed method has 
also been applied to time series analysis (put 
B = O). The maximum likelihoed estimate is a 
strongly nonlinear function of the parameters. 
Since timeseries analysis is mostly concerned 
with quadratic functions, such as covariances 
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and speetral densities, one might expect that 
the estimates can be expressed as nonlinear 
functions of the sample covariances. Estimates 
of this nature which are asymptotically equiva­
lent to the maximum likelihoed estimates for 
parametrie time series analysis have been given 
by Zetterberg (1968). 

ad d) Instrumental variables. Repeated least 
squares, generalized least squares and the maxi­
mum likelihoed method all give a model of the 
environment in terms of a model for the distur­
bances as a filter driven . by white noise. If we 
are only interested in the system dynamics there 
are ether methods to avoid the difficulties with 
correlated residuals i.e. the instrumental va­
riable method. 
The equation for the least squares estimate can 
be obtained from the equation 

y = <1>8 + e (5.42) · 

by premultiplying with <1>
1

, neglecting the term 
<1>

1 e and solving the equation 

(5,43) 

The estimate S will be unbiased if the te~ <1>
1 e 

has zero mean. When the residuals are correlated 
it is easy to show that E<l>1 e f 0. 
In the instrumental variable method (Kendall and 
Stuart, 1961; Wong and Polak, 1967) the equation 
(5.36) is multiplied with W1 where w (called the 
instrumental matrix) is a matrix whose elements 
are functions of the data with the properties 

positive definite (5.44) 

(5.45) 

The parameter estimate obtained from 

(5.46) 

will then be unbiased, It is also possible to 
find instrumental variables such that the esti­
mate has optimal properties. The schemes propo­
eed by Peterka and ~muk (1969), Hsia and Land­
grebe (1967) are closely related to the instru­
mental variable technique. 

ad e) Levin's method. A particular metbod for 
estimat~ng the b~as due to correlated residuals 
has been proposed by Levin (1958) for the par­
ticular case of a deterministic system with in­
dependent observation errors. Levin's results 
are based on a technique due to Koopmans and it 
gives the estimates in terms of an eigen value 
problem for the matrix <1>'<1>. A careful analysis 
of Levin's method which includes convergence 
proofs and errors estimates has been done by 
Aoki and Yue (1969), The methad is used ~y 
Smith (1968) for estimating the Laplace trans­
ferm of a process impulse response. 



Multivariable Systems 

The essential difficulty in th~ identification 
of multivariable systems is to find a suitable 
representation of the system. Once a particular 
representation is chosen it is a fairly straight 
- forward procedure to construct identification 
methods analogous to those given for the ca~e of 
systems with one input and one output. We refer 
to Section 4 for a discussion of structures for 
multivariable systems. Also c.f. Graupe, Swanick 
and Cassir (1968). For the structure (4.14) the 
likelihood function is given by 

N I N -I 
-log L(9,R) = Ïlog det R + 2 L E1 (k)R E(k) + 

k=l 

nN 
+ 2 log 27T (5.47) 

Even for multivariable systems the maximization 
of L(9,k) can be performed separately with res ... 
peet to 9 and R. It was shown by Eaton (1967) 
that the maximum of L(B,R) is obtained by finding 
9 which minimizes 

V(9) = det r Ï E(k)E' (k)J 
Lk=l 

(5.48) 

The maximization with respect to R can then be 
clone analytically to yield 

I N R =- l E(k)E 1 (k) 
N k=I 

(5.49) 

This fact is also mentioned in Rowe (1968). 

6. Identification of nonlinear systems 

Representation of Nonlinear Systems 

Note again that nonlinearity does not necessari­
.ly imply a nonlinearity-in-the-parameters too 
(c . f, Section 4). 
For linear systems the impulse response offers a 
non-parametrie system description that does not 
depend on specific a priori assumptions. For a 
wide class of nonlinear systems a Volterra series 
expansion offers an~logous possibilities, using 
impulse responses of increasing dimensionality. 
Approximation of these functions by a finite pum­
ber of points leads to a model that is linear-in­
the-parameters; c.f. Eykhoff (1963), Alper 
(1965), Roy and Sherman (1967). For many practi­
cal cases the number of parameters needed for 
this description is too large, 

When consiclering nonlinear systems as well as 
linear systems with multiple inputs and multiple 
outputs it therefore is necessary to make speci­
fic assumptions concerning the model structure. 
It ' is usually assumed that the system equations 
are known except for a number of parameters b. 
In a typical case the identification problem can 
then be formulated as fellows: 

. Let the class of models be all systems descri~ 
bed by the state equation 

dx dt f(x, u, 13, t) 

y = g(x, u, S, t) 
m 

(6, I) 

where the parameter vector S belongs to a given 
set. Let the criterion be given by the loss 
function 

V(S) J[;(k) - ym(k,l3~ 2d(: 
0 (6. 2) 

where y is the process output and ym the model 
output. 

Estimation for a parametrie model 

For special classes of nonlinear systems, where 
the linear dynamics and the nonlinearity-with­
out-memory can be separated, the identification 
technique by means of an adjustable model is 
sametimes feasible; c.f. Butler and Bohn (1966), 
Narenda and Gallman (1966). 

In the general case of nonlinearity-in-the-pa­
rameters the model output may be 

Ym = g(u1, ... , un; SI' "'' Sm) 

the error and error(loss) function may be given 
again as 

N 
V= V(y,ym) = l {y(k) - ym(k)}2 

k=l 

Two methods of solving the estimation problem 
are the following; c.f. Marquardt (1963). 

a) Expansion of g in a Taylor series (~~9~~-~! 
2~~~~=~~~~~~-!~~~~~) 

m a 
y (u,a + M) :::: g(u,S) + I <1f-)6S. (6.3) 
m j =I j J 

or 

y ., g + M 6S 
m 

Now y is linear in 613; consequently 6 13 can 
be fo~nd by the standard l east squares tech­
nique discussed before. The model is adjust..­
ed according to f 6j3 . and the same procedure 
is foliowed in the next iteration. 

b) Gradient Method, Now the gradient is deter-
iiiined:---------

av 1 

'"'d'S'""" ) 
m 

(6.4) 

and the model adjustment is chosen as rvsv; 
c,f. Section 3 - computational aspects, 



Generally speaking methad a) may suffer from 
divergence, methad b) may converge very slowly 
in the vincinity of the optimum. In the paper 
cited both methods are combined. 

Using quasilinearization Bellman and Kalaha 
(1965) have presented a salution for the non­
linear optimization problem. Interesting appli­
cations of this technique are found in Buel, 
Kagiwada and Kalaha (1967), Buel and Kalaha 
(1969). A fairly general computer program to 
solve the problem has been written by Buel. 

Another methad to solve the nonlinear optimiza­
tion problem has been given by Taylor, Iliff 
and Powers (1969) in conneetion with application 
to inflight determination of stability deriva­
tives. 
Again the criterion (6.2) can be given a proba­
bilistic interpretation if it is assumed that 
the only disturbances are white noise measure­
ment errors. A technique which admits the mea­
surement errors to be a stationary process with 
unknown rational speetral density has been pro­
posed by .Rström, Bohlin and Wensmark (1965). 
Due to specific assumptions that are made con­
cerning the structure of (6.1) one might expect 
that serious mistakes can be made if these as­
sumptions are not true. Results which prove or 
disprove this are not known. 

Rather few publications have appeared on the 
use of Bayes' methad (c.f. Appendix A) in iden­
tification techniques;Maslov (1963), Galtieri (1963), 
This is probably due to the computational pro­
blems when evaluating the conditional expecta­
tions. McGee and Walford (1968) propose a so­
lution by using a Monte Carlo approach. 

7. On-line andreal-time identification 

In many applications it is highly desirabie to 
obtain the result of the identification recur­
sively as the process develops. For example it 
might be of interest to praeeed until a speci­
fied parameter accuracy is achieved. The pro­
blem is then as follows. Assume that an esti­
mate SN is obtained based on N pairs of input­
output samples. Is it necessary to repeat the 
whole identification procedure from the begin­
ning, using the whole string of input/output 
data in order to obtain.aN+1 or is.it possib~e 
to arrange the computat1ons recurs1vely? An 
identification scheme which is recursive and 
which does not require that the whole string of 
input/output data is brought in at each step is 
called an on-line method, 
On-line idënt111ëation can thus be looked upon 
as a convenient way of arranging the computa­
tions. Apart from being of p.ractical interest 
this point of view on identification problems 
will also make it possible to establish connee­
tions with other fields e.g. nonlinear filter­
ing, stochastic approximation, learning and 
adaption. 
If the parameters of the process are truly time 
varying it is of course meaningless to do any­
thing else but to track the parameters in real-

time. This is called real-time identification. 
One may recognize two-ëoi;ip~tationäl-proëëd.~rës: 
an accumulative salution (open loop with respect 
to th~-p~~~~t~r estimate) and a !~S~!~iY~. solu­
tion (closed loop with respect to the parameter 
estimate); c.f. Genin (1968). 

Model Reference Techniques 

The on-line identification problem is sametimes 
formulated as a model tracking problem. A sim­
ple case is illustrated in Fig. 7;1. Note that 
this is an example of a Fecursive (closed loop) 
approach. 

b 

u process 

Fig. 7.1 

n 

adjust~nt 
mec~nism 

The input is simultaneously fed to the process 
and to a model with adjustable parameters. The 
adjustable parameters are changed by an aqjust­
mentmechanismwhich receives the process output 
y and the model output y as inputs. This for­
mulation of the on-line ~dentification problem 
was first considered by Whitaker (1958). 
The essential problem is to determine the ad­
justment mechanism such that the model parame~ 
ters in some sense will be close to the process· 
parameters. If there is no noise n present then 
a simple adjustment scheme, referred to as 
"learning identification", with good convergence 
properties can be used: 

8(N+1) = 8(N)+r,(y-ym) _u_~ 
!lul! 2 

c.f. Nagumo and Noda (1967), Bêlanger (1968). 
The effect of working with a quantized signal 
sign u is discussed in Crumand Wu (1968). In 
simple cases the adjustment mechanism makes the 
rate of change of the parameter adjustments 
proportional to the sensitivity derivatives. 
See e.g. Meissinger and Bekey (1966). A r~cent 
application of this idea is given by Rose and 
Lance (1969). The requirement that the closed 
loop is stabie is a necessary design criterion, 
Since the system consisting of the adj~stable 
model,the process and the adjustment mechani~m 
is highly nonlinear the stability problem is 
not trivia!. Using Liapunov methods, Lion 
(1966), Shackcloth and Butchart (1965), Parks 
(1966), Winson and Ray (1969), Pazdera anc;i 
Pottinger (1967) have designed stable systems. · 
Lion's results have recently been generalized 
to stochastic systems by Kushner (1969), The 
powerful stability tests develope.d by Popov 
(1962) and Zames (1966) have given new tools 



to design adjustment mechanisms which will re­
sult in stable systems. Initial efforts in this 
direction have been clone by Landau (1969) who 
has proposed stable model reference systems 
using the Popov criterion. 

On-line Least Squares 

The conversion of any identification metbod to 
an on-line technique consists of showing that 
the estimate satisfies a recursive equation. 
This is easily clone for the least squares method, 
Consicier the least squares model of Section 5. 
i.e. 

y(k) + a 1y(k-l) + ••• + 

Define 

and 

a y(k-n) n 

(7. I) 

(7. 2) 

~(N+I) = [-y(N),-y(N-1), ••• ,-y(N-n+l), 

,u(N), u(N-I), .. :,u(N-n+l)] (7.3) 

The least squares estimate is then given by 
( 5,7). It can be shown by simple algebraical 
manipulations that the least squares estimate 
satisfies the recursive equation 

8(N+I)=8(N)+r(N)[y(N+I)-~N+I) 8(N~ (7.4) 

where 8(N) denotes the least squares estimate 
based on N pairs of input/output data and 

r (N) •P (N) ~(N+ I) (a+~(N+ 1 )P (N)!f~N+ I)] -I (7. 5) 

P (N+ I) =P (N)-P (N) 'f(N+ I) (a+ f{N+ I )P (N) <p(N+ I)] -I. 

'~(N+I)P(N) = P(N)-r(N)9?(N+I)P(N) • 

=[I-f(N)'f{N+I~ P(N) (7.6) 

P(N) =arcfl
1
(N )<fl(N l] -I (7.7) 

0 L: 0 0 

and N is a number such that cfl
1
(N ) <fl (N ) is po-

sitivg definite. · · · 0 
· 

0 

The recursive equation (7,4) has astrong in~ 
tuitive appeal. The next estimate S(N) is form­
ed by adding a correction to the previous esti­
mate. The correction is proportional to 
y (N+ I) - Cf (N+ I) 8 (N) • The term <P 8 would be the 
value of y at time N+l if the model were per­
fect and there were no disturbances, The correc­
tion term is thus proportional to the differen­
ce between the measured. value of y(N+l) and the 
predietien of y(N+I) based on the previous model 
parameters. The components of the vector r(N) 
are weighting factors which tell how the eerree­
tions and the previous estimate should be weigh­
ted, 

I 

· Notice that in order to obtain the recursive 
equations it is riecessary to introduce the 
auxiliary quantity P. The state of the system 
(7.4), (7.5) and (7,6) governing the on-line 
estimator is thus the vector 8, which is the · 
current estimate, and the symmetrie matrix P. 
The pair (8,P) thus represents the smallest 
number of variables, characterizing the input/ 
output data, which are necessary to carry along 
in the computations. 
If the model of the system is actually given by 
(5.4), where {e~k)} are ~ndependent residuals 
with varianee o , the matrix P can be interpre­
ted as the covariance matrix of the estimate if 
a is chosen as o2, A special discussion is 
needed of the start of the iterative procedure, 
That can be clone by: 
- using possible a priori knowledge about 8 and 

P; 
- by using a "one shot" least squares estimation 

procedure using the first series of observa­
tions; 

-by starting with P(O) = ooi; c.f. Xlinger (1968), 

Notice that since 8(N) given by (7.4) is the 
least squares estimate the convergence of the 
equations (7.4) - (7,6) follows directly from 
the consistency proofs of the least squares es­
timate. 

Recursive versions of the generalized least 
squares procedure have been derived by Young 
(1969), Recursive versionsof an instrumental 
variable metbod has been derived by Peterka and 
Smuk (1969), An approximative on-line version 
of the maximum likelibood metbod has been pro­
posed by Panuska (1968), 

A discussion of on-line methods is also given 
in Leathrum (1969). 

Contraction Mappinas 

A technique of const~ucting recursive algorithms 
have been suggested by Oza and Jury (1968,1969). 
We will explain the technique in conneetion with 
the least squares problem. Instead of solving 
the equation 

<fl
1

(N)cfl(N)8(N) = <fl ·
1
(N)y (7 .8) 

for each N and showing that 8(N) satisfies a 
recursive equation, Oza and Jury introduce the 
mapping 

(7. 9) 

where y is a scalar, It is then shown that the 
sequence 

(7. I 0) 

under suitable conditions converges to the true 
parameters as N~. When applied to the ordinary 
least squares problems the algorithm (7.9) is 
not efficient in contrast with the recursive 
least squares method. To obtain an efficient 
algorithm it is necessary to make y a matrix. 



With the choice 

(7. 11) 

the algorithm becomes equivalent to the least 
squares, 

The method of Oza and Jury can be applied to 
more general cases than the least squares, It 
was actually proven for the case when there are 
errors in the measurements of both inputs and 
outputs, provided the covariance function of the 
measurement errors are known. The assumption of 
known covariances of the measurement errors se­
verely limits the practical applicability of the 
method. 

Stochastic Approximation·s 

The formula for the recursive least squares 

S (k+ I) .. 8 (k) + r (k) [Y (k+ I) - 'f(k+ I) 8 (k)] 

(7 .12) 

where r was chosen by the specific formula (7,5), 
It can be shown that there are many other choices 
of r for which the estimate 8 will converge to 
the true parameter value b, Using the theory of 
stochastic approximations it can be shown that 
the choice 

r (k) = ~ Alf' (k+ I) (7. 13) 

will ensure convergence if A is positive definite. 
See e . g. Albert and Gardoer (1967). A particu­
larly simple choice is e.g. A = I. The algorithms 
obtained by such choices of r will in general 
give estimates with variances that are larger 
than the varianee of the least-squares estimate. 
The algorithm5 are, however, of interest because 
they make it possible to reduce computations, at 
the price of a larger variance. Using stochastic 
approximations it is also possible to obtain re­
cursive algorithms in cases where the exact on­
line es ti mate is ei ther very compli cated or very 
difficult to derive. There are excellent surveys 
available on stochastic approximations. See e.g. 
Albert and Gardoer (1967) and Tsypkin (1966), 
Recent applications are given by Sakrison (1967), 
Saridis and Stein (1968a, 1968b), Holmes (1968), 
Elliott and Sworder (1969), Neal and Bekey (1969), 

Real-time Identification 

The recursive version of the least squares me­
thod is closely related to the Kalman filtering 
theory. Kalman conaiders a dynamical system 

x(k+l) <I> x(k) + e(k) 
(7. 14) 

y(k) = C x(k) + v(k) 

where {e(k), k • 1,2, ••• } and {v(k), k ~ 1,2, •• } 
are sequences of independent equally distributed 
random veetors with zero mean values and cova­
riance matrices Rl and R2 respectively. Kalman 
~as proven the fo lowing theorem, 
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Theorem (Kalman). Let the initial condition of 
(7.14) be a normal random variable (m,R ). Thè 
best estimate of x(k) (in the sense of Îeast . 
squares) given the observed outputs y(l), y(2), 
••• , y(k) is given by the recursive equations 

x(k) 

x(O) 

<~> x(k-1) + r (k) [y(k) - c <~> x(k-1 >] 

where 

r(k) 

S(k) 

m 

S(k) C
1 @ S(k) c1 + Rz]-l 

<I> P(k-1) <1>
1 + R

1 

P(k) S(k) - f(k) C S(k) 

S(O) R 
0 

(7. 15) 

' (7 .16) 

The matrix S(k) has a physical interpretation 
as the covariance matrix of the apriori estimatè 
of x(k) given y(l), ••• , y(k-1) and the matrix 
P(k) as the covariance of the posterior estimate 
of x(k) given y(l), •.• , y(k). 

Now consider the least squares identification of 
the system 

y(k) + a 1y(k-l) + ••• + a
0
y(k-n) = 

= b 1u(k-l) + •.. + b
0
u(k-n) + e(k) 

(7 ,17) 

where {e(k)} is a sequence of normal (Ü,À) ran­
dom variables. 
Introduce the coefficients of the model as state 
variables 

x (k) = a n n (7. 18) 
xn+l (k) bi 

xn+2(k) .. b 
2 

x
2 

(k) ... b 
n . n 

and define the following vector 

C(k)= [-y(k-1), ••• ,-y(k-n), u(k-1), ••• , u(k-n)] · 

(7. 19) 

Since the coefficients are constant we have 

x(k+ I) "' x(k) (7, 20) 

The equation (7,17) can now be written as 

y(k) ~ C(k) x(k) + e(k) {7,21} 



and the least squares identification problem can 
'be stated as a Kalman filtering problem with 
• = I R = 0 R = A2 ' I ' 2 • 

' The recursive equations of the least squares es­
timate can thus be obtained directly from Kal­
man's theorem. This has an interesting conse­
quence because it turns out that if the parame­
ters ai.are not constauts but gauss-markov pro­
cesses ~.e. 

a. (k+ I ) = a a. {k) + v. (k) 
~ ~ ~ 

(7. 22) 

the Kalman theorem can still be applied. (This 
requires a slight generalization of Kalrnan's 
proof since the parameters of the C vector are 
stochastic processes.) 

,Bohlin (1970) has extended the argument to pro­
cessas of the structure (7.17) with coefficients 
which are processes with rational speetral den­
sities, 
It thus is possible to obtain parameter estima­
tors for linear roodels with time varying para­
meters. It is in fact not necessary to assume 
•a first order ·process but the parameters a. can 
be chosen to be stationary processes with fatio­
nal speetral densities, 

'In this way it is possible to obtain identifiers 
for processes with rapidly varying parameters, 
This has been discussed by Bohlin (1969) and 
Wieelander (1969), The method proposed by 
·Segerstihl (1969) can be considered as the spe­
cial case v. • 0, Notice that with this approach . . ~ 
1t 1s necessary to know the covariances of the 
'processes {v.} characterizing the variations in 
'the model pafameters. Such assumptions will of 
course limit the practical applicability of the 
methods, One way to evereome this difficulty is 
:to use the approximative techniques for estima­
ting the covariances in a Kalman filter proposed 
by Mehra (1969a) and Sage and Husa (1969), Tech­
~iques for validating the assumptions of the 
.Kalman filtering problem have been proposed by 
Berkovec (1969), Recursive estimation of the 
transition matrix is discussed by Pearson (1967). 
~n analog implementation is given by Hsia and 
Vimolvanich (1969), 

.Nonlinear Fi 1 tering 

'The relationship between the recursive least 
squares and the Kalman filtering theory was ob­
,tained by introducing the parameters of the · 
lidentification problem as state variables, We 
thus find that there are in principle no diffe­
rences between parameter estimation and state 
~stimation, A parameter estimation problem can 
be extended to a parameter-and-state estimation 
problem by introducing the parameters as auxi­
liary state variables,A constant parameter b cor­
~espohds to the state equation 

~. 0 
dt 

for continuous time systems and 

b (k+ I ) • b (k) 

(7 ,23) 

(7. 24) 

for discrete time systems, The (state) estima­
tion problem obtained in this way will however . ' ' 
~n general be a nonlinear problem since the pa-
rameters frequently occur in terros like bx(t) 
i~ the original parameter problem, Only in spe­
c~al cases an optimal identification scheme can 
be fo~ed (Fari~on, 1967~; in other cases only 
subopt1mal nonl~near est1mation schemes are 
known, In the general continuous time case we 
are thus faced with a filtering problem for the 
model 

dx = f(x,t)dt + cr(t,x)dv 
(7.25) 

dy = g(x,t)dt + ~(t,x)de 

w~ere. {v(t)} and {e{t)} are Wiener proçesses 
w1th ~ncremental covariances I dt and I dt, 
Some of the components of x ar~ state viriables 
and other are parameters of the identification 
problem, The nonlinear filter~ng problem is co~ 
pletely solved if the conditional probability 
of x(t). given. {y(~), t

0 
_: s _: t} can be computed, 

The ~ax:mum l1kel1hood estimate is e.g. obtained 
by f1nd~ng the value of x for which the condi­
tio~al de~sit~ has its maximum. The least squares 
est1mate 1s g1ven by the conditional mean etc, 
Gompare the resume of estimation theory in ap­
pendix A. 

The nonlinear filtering problem has been "solved" 
by Bucy (1965), Shiryaev (1966), Kushner (1967a) 
Stratonovich (1962), Wonham (1964) and others. ' 

Under suitable regularity conditions it is shown 
t~at the conditional probability density of x(t) 
g~ven {y{s), t < s < t} satisfies the following 
f . 0..,. -unct1onal equat1on, 

n a I n 2 
dtp(t,x)• -(I ax.-<fip)+z I a a a (cr.cr.p)]dt 

1•1 ~ ~ . I x. x. 1 J ... ,J'" 1 J 

+ [dy-I g(x,t)p(x,t)dx]' ~ ~~J- 1 , 

. • [dy- I g(x,t)p{x,t)dx] 

(7. 26) 

where the differential d p is interpreted in the 
I~o sense, In the special case of linear systems 
wh1th gaus~-markov parameters, discussed before, 
t e funct1onal equation has a solution which is 
a gaussian distribution, Apart from this special 
case the solution .of the functional equation is 
a~ extremely difficult numerical problem even in 
s1mple cases, For a system of second order with 
two parameters the vector x will have four co~ 
ponen~s: If we approximate crudely e.g. by 
quant1z~ng each state variable in 100 levels the 
s~orage of the function p(x,t) fora fixed t 
w1ll rP.quire 1004 • 108 cells, 

Approximations 

From the functional equation for the conditional 
distribution it is possible to derive equations 
for the maximum likelibood estimate (the mode) 
the minimum varianee estimate (the conditional' 



mean) etc. It turns out that these equations are 
also very unattractive for numerical computations. 
If we want to compute the conditional mean we 
find that the differential equation for the mean 
will contain not only covariances but also high­
er moments, It is therefore of great interest 
to find approximative methods to solve the non­
linear filtering problem, Approximative schemes 
have been suggested by Bass and Schwartz (1966), 
Nishimura et al. (1969), Sunahara (1969), Kushoer 
(1967b), Jaszwinski (1966, 1969), Kushoer's ar­
ticle contains a good survey of many of the dif­
ficulties associated with the approximative 
techniques, The following type of approximation 
has been suggested by several authors. Estimate 
x of (7,25) by x given by 

di • f(i,t)dt + r(t) [dy- g (x,t)dt] (7. 27) 

The estimate x is sometimes referred to as the 
~!t~ug~g Kalman filter. The gain matrix r of 
(7,27) can be chosen in many different ways e.g. 
by evaluating the optimal gain for the linear­
ized problem or simply by choosing 

I r ( t) • t g' (x, t) (7.28) 

in analogy with stochastic approximations. See 
e.g. Cox (1964). The essential difficulty with 
all the approximative techniques is to establish 
convergence, In practice it is often found that 
the algorithms converge very well if good ini­
tial conditions are available, i.e. if there are 
good initial estimates of the parameters, and if 
suitable computational "tricks" are used. A com­
putational comparison of several nonlinear fil­
ters is given by Schwartz and Stear (1968). A 
technique allowing secend order nonlinearity in 
system measurements is discussed in Neal (1968), 

The application of (7.27) to system identifica­
tion was firs t proposed by Kopp and Orford ( 1963). 
It has recently been applied to several indus­
trial identification problems e.g. nuclear reac­
tors in Habegger and Bailey (1969), stirred tank 
reactor in Wells ( 1969) and head box dynamica in 
Sastry and Vetter (1969). 

8. Some concluding remarks. 

In the previous sections. applicable identifica­
tion techniques as well as (yet) unsolved pro­
blems have been mentioned, Particularly from the 
point of view of the practising engineers (being 
university professors we are really sticking our 
necks out now) there are many important questions 
that remain to be answered, For example how 
should the sampling interval be chosen? What is 
a reasonable model structure? How should an iden­
tification experiment be planned? How can it be 
ensured that the a priori assumptions required 
to use a particular metbod are not violated? 
If we leave the area of general problems and 

· study specific methods the situation is better. 

Linear Time-invariant Systems, There are good 
techniques available for identifing linear sta­

~ tionary systems as well as linear environments 
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(stationary stochastic processes). The relation~ 
between different techniques are reasonably well 
understood and the choice of methods can be done 
largely on the basis of the final purpose of the 
identification, There are, however, unresolved 
problems also in this area, for example conver~ 
gences proofs for the generalized least squares 
method. 

Multivariable Systems. The essential difficulty 
with multivariable systems is to choose a suit­
able canonical form. A few such forms are avai­
lable but the str.uctural. problems are not yet 
neatly resolved. For example there are few good 
techniques to incorporate a priori knowledge of 
the nature that there is no coupling between two 
variables or that there is a strong coupling 
between two other variables. If a multivariable 
system is identified as a conglomerate of sin­
gle-input single-output systems, how should the 
different single-input single-output systems be 
combined into one model? How do we decide if a 
particular mode is common to several loops ta­
king uncertainties into account? 
Once a particular structure is chosen the so­
lution of the multivariable identification pro­
blem is straightforward. 

Nonlinear Systems, The techniques currently 
used simply convert the identification problem 
to an approximation problem by postulating a 
structure. The few non-parametrie techniques 
available are computationally extremely time 
consuming. . 

On-line and Real-time Identification, This is a 
f~ddlers paradise, Much work remains to be done 
to prove convergence as well as to devise ap­
proximation techniques, 

Empirica! Knowledge Available. The extensive 
applications of identification methods which 
are now available provide a souree of empirica! 
information which might be worth a closer ana­
lysis. 
One of the most striking facts is that most me­
thode yield very simple models even for complex 
systems. It seldom happens that models of a 
single-input single-output system arè of an 
order higher than 5. This fact, which is extre­
mely encouraging from the point of view of com­
plexity of the regulator, is not at all well­
understood. 
Most methods seem to work extremely well on si­
mulated data, but not always that well on actual 
industrial data. This indicates that some methods 
might be very sensitive to the a priori assump­
tions. It therefore seems highly desirable tà 
develop tests which insure that the a priori 
assumptions are not contradicted by the experi­
mental data. It also means that it is highly 
desirable to have techniques which are flexible 
with respect to a priori assumptions. A typical 
example is the assumption that the measurement 
errors or the residuals have a known covariance 
function, It is of course highly unnatural 
from a practical point of view to aasurne that 
we have an unknown model but that the residuals 
of this unknown model have known statistica. 



Comparison of Different Techniques 

In spite of the large literature on identifica­
tion there are few papers which compare diffe­
rent techniques. The exceptions are Van den 
Boom and Melis (1969), Cheruy and Menendez (1969), 
Gustavsson (1969). Of course it is more fun to 
dream up new methods than to work with somebody 
else's scheme. Nevertheless for a person enga­
ged in applications it would he highly desira­
ble to have comparisons available. It would 
also he nice to have a selection of data to 
which several known techniques are tried which 
can be used to evaluate new methods. 

Where is the Field Moving? 

It is our hope and expectation that the field 
is moving towards more onification and that 
there will he more comparisons of different 
techniques, The textbooks which up to now have 
beén lacking will definitely contribute to that; 
forthcoming are: Eykhoff (1970), Sage and Melsa 
(1970), The area of identification will cer­
tainly also in the future be influenced by vi­
gorous development of other fields of control 

· systems theory. One may guess that the present­
ly active work on multivariable systems will 
result in a deeper understanding of such systems 
and consequently also of the structural problems. 
The recent results in stability theory might 
influence the real time identification algo­
rithms, Pattem recognition and related theories 
will contribute also to the field of identifi­
cation; e.g. Tsypkin (1968), 
Also after the IFAC, Prague, 1970 symposium a 
lot of work remains to he done, 
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Appendix A - A resumé of parameter estimation. 

As a tutorial resumé of the statistica! methods 
the following example of utmost simplicity may 
suffice. Consider the situation of fig. A.1 

u(k) 

observed signals 

Fig. A.1 

where an estimate B has to be found for para­
meter b. This estimate has to be derived from 
a number of signal samples u(k) and y(k) 
where 

y(k) = b u(k) + n(k) .(A,1) 

and where the average (expected) value of n(k) 
is zero, 

Using the least-squares method the estimate 
is chosen in such a way that the loss function, 
defined as 

V(6) = I [y(k) - 6u(k)] 2 • (y-6u)1 (y-6u), 
k 

is a minimum. 
In fig. A.2 the differences between the obser­
vations y and the 11predictions11 8u are indi­
cated, The minimization can be pursued analy­
~ic,lly; a necessary condition ·for the minimum 
l.S 

or 

or 

ddB I [y(k)-6u(k)] 
2 

.. 0 
k 

6 = 8 

I u(k) [y(k)-Su(k)] = 0 
k 

(A.2) 

'I 

t ____ c-:~ 
;,~ 

1l : 
---u 

arctan~ 

Fig.A.2 

I u(k) y(k) 

8 k (A.3) 
I u(k) u(k) 
k 

A 

6 is the optimal estimate under the conditions 
given, Note from (A,2) that the terros 
y(k)-6u(k) are weighted with respect to u(k); 
quite naturally the larger the input signal, 
the more importance is assigned to the devia­
tion between observation y(k) and 11predict;ion" 
6u(k)! Equation (A.3) refers to the correlation 
methods. For the extension to the more-parame­
ter case and to the generalised least-squares 
methad c.f. sectien 5. 

Using the maximum-likelihoed method for the 
same case as before, we have to know p , the 
probability density function of n(k), ~n that 
case the maasurement of u(k) provides us with 
the knowledge sketched in fig. A.J, the a­
E!i~!i probability density of y(k) with b-as 
parameter. Now the measurement (or !_E2~!~!i2!~ 
knowledge) of y(k) brings us to the situation 
indicated in fig. A.4. The function L(y(k);6) 
is called likelihoed function, We have to 
assign an ëstimatë~ä-from-this function L. A 
reasonable and popular choice is to take that 
value S, for which L(y(k);6) has its maximal 
value. Again this can be generalized to more-

· -parameter cases. 

Using the Bayes' method for the same case, one 
needs, as before, p , but also the a priori 
probability densitynfunction pb of b, Note that 
previously b was an unknown constant, and that 
now b is a random variable. From Bayes' rule 

p(bly) = p(~,b) = p(ylb) y<b) 
p y) p(y 

This can be interpreted as: the probability 
density function of the parameter b, given the 
result of the measurement on y. This can be 
rewritten as: 

p(y,b) .. p(y-ub,b) I a(y;;b) I = pn(y-up) Ib(b) 
. ~ 

I 

as b and n are statistically independent. pb 
and p give a probability density function as 
indicgted in fig. A.s. Note that this is the 



p(y:b) 
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u(k) 

Fig.A.J 

!_E!!~!i knowledge, available befere the measu­
rement of u(k) and y(k). These measurements 
provide us wi th a "cut" through the probabili ty­
-density function, from which the ~-E~~!~!i~!! 
probability function for b fellows. This new 
probability function now may be used as the a 
priori knowledge for the following measurement. 
In this way the development of pb with increas­
ing number of observations can be followed; 
c.f~ fig. A.6, Note that p , the additive noise . . n 
being stationary, does not change, 

The reader is invited to consider special cases 
like u(k) = 0 and u(k) ~ oo, Again the method 
can be generalized to more parameters; its 
vizualisation has severe limitations, however. 
Note that in this case the knowledge on b is 
g.iven in terms of pb' a function, In practice 
thé reduction from a function to a single value 
(estimate) can be done by using a cost or loss 
function, providing a minimum cost- or minimum 
loss estimate. 

p(Y,b) 

I 

p(y; b) 

t 

L ( yOc); (') 

Fig. A{. 

The problem of input noise, The simple example 
of fig. A.l also serves very well to illustrate 
the so-called "problem of input noise". 
Consider the system illustrated by the block 
diagram in fig. A.7 where neither the input nor 
the output can be observed exactly. 

It is wellknown in statistica (see e.g. Lindley, 
(1965) that, unless specific assumptions are 
made concerning the variations in u, n and v 
it is not possible to estimate the dynamica of 
the process, 
Consider e.g. 

y(k) bu(k) + n(k) 

ü(k) u(k) + v(k) 

Assume that v(k) and n(k) are independent 
stochastic variables with zero mean values. If 
v(k) = 0 we find that the estimate of b is given 
by (A. 3) 

y-ub 

t JPb 
/I' 

/ I ', 
I I \ 

a 

I I ' . / ' 

Fig,A.S 

-.0::::..---;J----........... -
/ 

./ 
/ 

./ 

35 

Fig. A.l 



n(k) 

u(k) y(k) 

~--~~--· 

observed signals 

Fig.A.7 

I ü(k) y(k) 
ê • .;;k;..._ ___ _ 

I il(u) 
k 

ü(k) 

Y(k) 

However, if n(k) = 0 we find by the same argu­
ment that the estimate of b is 

I u(k) y(k) 
ê ------I y(k) y(k) 

This corresponds to choosing B such that 
the difference between the observations u(k) 
and the predictions jy(k) are as small as pos­
sible in the least squares sense. See fig. A.S. 

Without additional information it is of course 

impossible to tell which est~~~-~~- --~~ - -~hoo~-~~ 

INPUT 
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t 1 (!y(k)- u<k> 
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"..... I 
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Fig.A.8 

Appendix B - An example of least squares; iden-
tification of a parametrie model. 

To illustrate the least squares method, its 
applications and some numerical problems which 
might arise, we provide an example. The compu­
tations are carried out on input-output data 
from a known process. 

In fig. B.l we show input-output pairs which are 
generated by the equation 

al a2 

y(k) + I. Sy(k-1) + o. 7y(k-2) 1.0 u(k-1) + 

b2 
+ O,Su(k-2) + À e(k) (B. I) 
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where {e(k)} is a sequence of independent nor­
mal (0,1) random numbers generated by a pseudo 

. random generator. The following values of À 

have been used: O, 0.1, 0.5, 1.0 and 5.0. 

In Table B.l we show the results obtained when 
a model having the structure (B.I) is fitted to 
the generated input-output data using the least 
squares procedure. 
The estimates are calculated recursively for 
models of increasing order to illustrate the 
very typical situation in practic~ when the 
order of the model is not known. In Table B.l, 
we have shown the least squares parameter esti­
matea and their estimated accuracy, the loss 
function and a conditioning number of the matrix 
~·~. The conditioning number ~ = 2n max{(A) .. } 
max{(A-1), . } is chosen rather arbitrarily. 1

J 
1J 

We wi 11 now analyse the re sult of Tab le B. I • 
Let us first consider the case of no disturban­
ces À • 0, In this case we find that it is only 
possible to compute models of order I and 2. 
When we try to compute the third order model, 
we find that the matrix <1>

1
<1> is singular as 

would be expected, The conditioning number is 
1,3 x 106, We also . find that the estimated 
standard deviations of the second order model 
are zero, 
To handle the numerical problems for a model of 
third o~der in a case like this, we must use 
numerical methods which do not require the in­
version of <1>

1
<1> e.g. the reduction of <I> to 

triangular form using the QR algorithm. This 
has been persued by Peterka and ~muk (1969). 
They have shown that this calculation can also 
be done recursivel y in the order of the system. 

I 
model 1 ... 

"'I "'2 "'3 order 

... 
al 

Proceeding to the case of À= 0.1, i.e. the 
standard deviation of the disturbances is one 
tenth of the magnitude of the input signals, we 
find that the matrix~'<!> is still badly condi­
tioned when a third order model is computed. 

Analysing the details we find, however, that 
the Gauss Jordan method gives a reasonable 
accurate inverse of <1>

1
<1>. Pre- and postmulti­

plying the matrix with its computed inverse, we 
find that the largest off-diagonal element is 
0.011 and the largest deviation of diagonal 
elements from 1.000 is 0.0045. We also find 
that the estimates a3 and s3 do not differ sig­
nificantly from zero. 

We will also discuss some other ways to find 
the order of the system. We can e.g. consider 
the variances of the parameters. We find e.g. 
from Table B.l that the coefficients ~3 and s 3 do not differ significantly from zero 1n any 
case. In Table B.2 we also summarize the values 
of the loss function as well as the values of 
the F-testvariable when testing the reduction 
of the loss function for a model of order n 1 
compared to a model of order n2 as was2discus­
sed before. We have at the 10% level x = 2.32. 
We thus find that by applying the x2-test in 
this case we get as a result that the system is 
of second order for all samples. The actual 
parametervalues of Table B,l as wellas the 
estimated accuracies give an indication of the 
accuracy that can be obtained in a case l.ike 
this. 

It should, however, be emphasized that when the 
same procedure is applied to pratical data the 
results are very seldom as.clearcut as in this 
simulated example. See. e.g. Gustavsson (1969), , 

... ... ... 
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Table B, I Least squares estimates of the parameters, 

37 



case I À = 0 

i V ~· O i ~ 2 ~ 

0 2666.23 59 I I 
I 285,86 205 0 i 442.4 00 

2 i ' 0,00 35974 00 

I 

case 2 À 0.1 

n V ~ ~3 0 .2644.15 
. 

-· --
I 

42100 I 248.447 60 0 472 57000 

2 0.987 205 12000 5900 

3 0.983 35974 2 0.191 

case 3 À = 0,5 

V '· n ~ .,_ n2 
I 2 3 4 - --·. -- · -~. -·-· --------

0 2701.35 nl ', 
- -~----------------·--

227.848 63 0 532 2616 1715 1283 

2 24.558 206 397 195 130 

3 24.451 1518 2 0.2 0.1 

4 24.006 2982 3 0,8 

case 4 À = 1.0 

V 
'\, 

n ~- "n2 : I 2 3 4 5 -- -r--- - .. ------ -
0 3166.78 n~ - ----- - -·- ---- - - - -- - - ~ 

I 308.131 212 0 i 455 734 487 365 292 

2 99.863 476 100 50 33 25 

3 98.698 873 2 0.55 0.72 0,80 

4 96.813 1351 3 0,88 0.92 

5 94.800 1647 4 0.96 

case 5 À • 5.0 

n ~ V ~ 2 3 4 5 ------- --- - - --- - --
0 21467.64 

I ---· ------- ---- - ··- -···· - -- . 

I 

2 

3 

4 

5 

5131.905 520 0 156. 185 122 92 

2462.220 1174 52 26 18 

2440.245 2031 2 0,21 0.94 

2375.624 2910 3 1.2 

2290.730 3847 4 

Table B.2 Gives the values of the loss function V, the 
conditioning number ~of ~~~ and a table of 
x2-values when identifying models of different 
order to the example of Fig. B.l. 
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