7,879 research outputs found
Coal extrusion in the plastic state
Continuous feeding of coal in a compressing screw extruder is described as a method of introducing coal into pressurized systems. The method utilizes the property of many bituminous coals of softening at temperatures from 350 to 425 C. Coal is then fed, much in the manner of common thermoplastics, using screw extruders. Data on the viscosity and extruder parameters for extrusion of Illinois No. 6 coal are presented
Using the Regular Chains Library to build cylindrical algebraic decompositions by projecting and lifting
Cylindrical algebraic decomposition (CAD) is an important tool, both for
quantifier elimination over the reals and a range of other applications.
Traditionally, a CAD is built through a process of projection and lifting to
move the problem within Euclidean spaces of changing dimension. Recently, an
alternative approach which first decomposes complex space using triangular
decomposition before refining to real space has been introduced and implemented
within the RegularChains Library of Maple. We here describe a freely available
package ProjectionCAD which utilises the routines within the RegularChains
Library to build CADs by projection and lifting. We detail how the projection
and lifting algorithms were modified to allow this, discuss the motivation and
survey the functionality of the package
Statistical Physics of Self-Replication
Self-replication is a capacity common to every species of living thing, and
simple physical intuition dictates that such a process must invariably be
fueled by the production of entropy. Here, we undertake to make this intuition
rigorous and quantitative by deriving a lower bound for the amount of heat that
is produced during a process of self-replication in a system coupled to a
thermal bath. We find that the minimum value for the physically allowed rate of
heat production is determined by the growth rate, internal entropy, and
durability of the replicator, and we discuss the implications of this finding
for bacterial cell division, as well as for the pre-biotic emergence of
self-replicating nucleic acids.Comment: 4+ pages, 1 figur
Anomalous isotopic predissociation in the F³Πu(v=1) state of O₂
Using a tunable, narrow-bandwidth vacuum-ultraviolet source based on third-harmonic generation from excimer-pumped dye-laser radiation, the F³Πu←X³Σg-(1,0)photoabsorption cross sections of ¹⁶O₂ and ¹⁸O₂ have been recorded in high resolution. Rotational analyses have been performed and the resultant F(v=1) term values fitted to the ³Π Hamiltonian of Brown and Merer [J. Mol. Spectrosc. 74, 488 (1979)]. A large rotationless isotope effect is observed in the F(v=1)predissociation, wherein the Lorentzian linewidth component for ¹⁸O₂ is a factor of ∼50 smaller than the corresponding ¹⁶O₂linewidth. This effect, a consequence of the nonadiabatic rotationless predissociation mechanism, is described using a coupled-channel treatment of the strongly Rydberg-valence-mixed 3Πu states. Significant J, e/f-parity, and sublevel dependencies observed in the isotopic F(v=1) rotational widths are found to derive from an indirect predissociation mechanism involving an accidental degeneracy with the E³Σ−u(v=3) level, itself strongly predissociated by ³Σ−u Rydberg-valence interactions, together with L-uncoupling (rotational) interactions between the Rydberg components of the F and E states. Transitions into the E(v=3) level are observed directly for the first time, specifically in the ¹⁸O₂ spectrumPartial support
was provided by an NSF International Opportunities for Scientists
and Engineers Program Grant No. INT-9513350, and
Visiting Fellowships for G.S. and J.B.W. at the Australian
National University
Whole body interaction
In this workshop we explore the notation of whole body interaction. We bring together different disciplines to create a new research direction for study of this emerging form of interaction
Slip in the 2010–2011 Canterbury earthquakes, New Zealand
The 3rd September 2010 Mw 7.1 Darfield and 21st February 2011 Mw 6.3 Christchurch (New Zealand) earthquakes occurred on previously unknown faults. We use InSAR ground displacements, SAR amplitude offsets, field mapping, aerial photographs, satellite optical imagery, a LiDAR DEM and teleseismic body-wave modeling to constrain the pattern of faulting in these earthquakes. The InSAR measurements reveal slip on multiple strike-slip segments and secondary reverse faults associated with the Darfield main shock. Fault orientations are consistent with those expected from the GPS-derived strain field. The InSAR line-of-sight displacement field indicates the main fault rupture is about 45 km long, and is confined largely to the upper 10 km of the crust. Slip on the individual fault segments of up to 8 m at 4 km depth indicate stress drops of 6–10 MPa. In each event, rupture initiated on a reverse fault segment, before continuing onto a strike-slip segment. The non-double couple seismological moment tensors for each event are matched well by the sum of double couple equivalent moment tensors for fault slip determined by InSAR. The slip distributions derived from InSAR observations of both the Darfield and Christchurch events show a 15-km-long gap in fault slip south-west of Christchurch, which may present a continuing seismic hazard if a further unknown fault structure of significant size should exist there
Reviewing research evidence and the case of participation in sport and physical recreation by black and minority ethnic communities
The paper addresses the implications of using the process of systematic review in the many areas of leisure where there is a dearth of material that would be admitted into conventional Cochrane Reviews. This raises important questions about what constitutes legitimate knowledge, questions that are of critical import not just to leisure scholars, but to the formulation of policy. The search for certainty in an area that lacks conceptual consensus results in an epistemological imperialism that takes a geocentric form. While clearly, there is a need for good research design whatever the style of research, we contend that the wholesale rejection of insightful research is profligate and foolhardy. A mechanism has to be found to capitalise on good quality research of whatever form. In that search, we draw upon our experience of conducting a review of the material available on participation in sport and physical recreation by people from Black and minority ethnic groups. The paper concludes with a proposal for a more productive review process that makes better use of the full panoply of good quality research available. © 2012 © 2012 Taylor & Francis
An investigation into the validity of utilising the CDRAD 2.0 phantom for optimisation studies in digital radiography
Objectives: To determine if a relationship exists between low contrast detail (LCD) detectability using the CDRAD 2.0 phantom, visual measures of image quality (IQ) and simulated lesion visibility (LV) when performing digital chest radiography (CXR).
Methods: Using a range of acquisition parameters, a CDRAD 2.0 phantom was used to acquire a set of images with different levels of image quality. LCD detectability using the CDRAD 2.0 phantom, represented by an image quality figure inverse (IQFinv) metric, was determined using the phantom analyser software. A Lungman chest phantom was loaded with two simulated lesions, of different sizes / placed in different locations, and was imaged using the same acquisition factors as the CDRAD phantom. A relative visual grading analysis (VGA) was used by seven observers for IQ and LV evaluation of the Lungman images. Correlations between IQFinv, IQ and LV were investigated.
Results: Pearson’s correlation demonstrated a strong positive correlation (r=0.91; p<0.001) between the IQ and the IQFinv. Spearman’s correlation showed a good positive correlation (r=0.79; p<0.001) and (r=0.68; p<0.001) between the IQFinv and the LV for the first lesion (left upper lobe) and the second lesion (right middle lobe), respectively.
Conclusions: From results presented in this study, the automated evaluation of LCD detectability using CDRAD 2.0 phantom is likely to be a suitable option for IQ and LV evaluation in digital CXR optimisation studies
Construction and validation of a low cost paediatric pelvis phantom
PURPOSE: Imaging phantoms can be cost prohibitive, therefore a need exists to produce low cost alternatives which are fit for purpose. This paper describes the development and validation of a low cost paediatric pelvis phantom based on the anatomy of a 5-year-old child.
METHODS: Tissue equivalent materials representing paediatric bone (Plaster of Paris; PoP) and soft tissue (Poly methyl methacrylate; PMMA) were used. PMMA was machined to match the bony anatomy identified from a CT scan of a 5-year-old child and cavities were created for infusing the PoP. Phantom validation comprised physical and visual measures. Physical included CT density comparison between a CT scan of a 5-year old child and the phantom and Signal to Noise Ratio (SNR) comparative analysis of anteroposterior phantom X-ray images against a commercial anthropomorphic phantom. Visual analysis using a psychometric image quality scale (face validity).
RESULTS: CT density, the percentage difference between cortical bone, soft tissue and their equivalent tissue substitutes were -4.7 to -4.1% and -23.4%, respectively. For SNR, (mAs response) there was a strong positive correlation between the two phantoms (r>0.95 for all kVps). For kVp response, there was a strong positive correlation between 1 and 8 mAs (r=0.85), this then decreased as mAs increased (r=-0.21 at 20 mAs). Psychometric scale results produced a Cronbach’s Alpha of almost 0.8.
CONCLUSIONS: Physical and visual measures suggest our low-cost phantom has suitable anatomical characteristics for X-ray imaging. Our phantom could have utility in dose and image quality optimisation studies.
Keywords: Pelvis phantom, low-cost, dose optimisation, validation, development
- …
