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Using a tunable, narrow-bandwidth vacuum-ultraviolet source based on third-harmonic generation
from excimer-pumped dye-laser radiation, theF 3Pu←X 3Sg

2(1,0) photoabsorption cross sections
of 16O2 and18O2 have been recorded in high resolution. Rotational analyses have been performed
and the resultantF(v51) term values fitted to the3P Hamiltonian of Brown and Merer@J. Mol.
Spectrosc.74, 488 ~1979!#. A large rotationless isotope effect is observed in theF(v51)
predissociation, wherein the Lorentzian linewidth component for18O2 is a factor of;50 smaller
than the corresponding16O2 linewidth. This effect, a consequence of the nonadiabatic rotationless
predissociation mechanism, is described using a coupled-channel treatment of the strongly
Rydberg-valence-mixed3Pu states. SignificantJ, e/ f -parity, and sublevel dependencies observed in
the isotopic F(v51) rotational widths are found to derive from an indirect predissociation
mechanism involving an accidental degeneracy with theE 3Su

2(v53) level, itself strongly
predissociated by3Su

2 Rydberg-valence interactions, together withL -uncoupling ~rotational!
interactions between the Rydberg components of theF and E states. Transitions into theE(v
53) level are observed directly for the first time, specifically in the18O2 spectrum. ©2002
American Institute of Physics.@DOI: 10.1063/1.1436106#

I. INTRODUCTION

Perturbations in molecular spectra lead to a wide range
of interesting effects.1 In particular, strong Rydberg-valence
interactions can produce anomalous behavior in the vibra-
tional, rotational, and isotopic dependencies of line positions,
intensities, predissociation widths, and asymmetries.

In the case of O2 , for example, interactions between the
pu

3pg
3 3Su

2 valence state and the 3ppu
3Su

2 Rydberg state2

(Hel'4000 cm21) control the bulk of the ground-state spec-
tral structure and predissociation dynamics in the 1170–
1400-Å ~71 400–85 500-cm21! region. Anomalous isotopic
shifts and anomalous isotopic dependencies of predissocia-
tion linewidth and line-shape asymmetry have been
reported3–5 for the E 3Su

2←X 3Sg
2(0,0) transition of O2 ,

near 1245 Å, where theE state is the upper adiabatic state
formed by the avoided crossing between the Rydberg and
valence states of3Su

2 symmetry.
Thepgsu

3Pu valence andpg3psu
3Pu Rydberg states

of O2 are known to interact even more strongly than the3Su
2

states2 (Hel'7000 cm21) and might be expected to exhibit
similar effects. Indeed, anomalous vibrational spacings have
been reported in theF 3Pu state of O2 ,6 where theF state is
the upper adiabatic~double-well! state formed by interac-
tions among the valence, 3p, and 4p Rydberg states of3Pu

symmetry. In addition, wildly differing intensity ratios have

been observed for the~0,0! and ~1,0! bands of the
F 3Pu–X 3Sg

2 system in single- and three-photon excitation,
attributed to the effects of the Rydberg-valence interaction.7

In Fig. 1 of the review of the3Pu←X 3Sg
2 transitions of

O2 , by Englandet al.,6 there is an apparent isotopic intensity
anomaly, hitherto unexplained. In particular, theF←X(1,0)
band of18O2 , near 1153 Å~86 730 cm21!, appears consider-
ably weaker than the corresponding band of16O2 and exhib-
its apparent subband intensity anomalies. In this work, with
the aid of high-resolution measurements of the photoabsorp-
tion cross section for theF←X(1,0) band of18O2 , we show
that the apparent intensity anomaly is a result of anomalous
isotopic dependence in thepredissociationof F(v51), to-
gether with the effects of inadequate instrumental resolution
in previous experiments.6 Spectroscopic parameters are de-
termined for theF(v51) levels of 16O2 and 18O2 and the
isotopic pattern of predissociation is explained with the aid
of coupled-channel Schro¨dinger equation~CSE! models of
the 3Pu and3Su

2 Rydberg-valence interactions.

II. EXPERIMENTAL METHOD

Photoabsorption cross sections were measured for the
F←X(1,0) bands of16O2 and 18O2 near 1153 Å using tun-
able, narrow-bandwidth, coherent vacuum-ultraviolet~vuv!
radiation obtained by third-harmonic generation in a nonlin-
ear medium.8 The apparatus was similar to that employed in
the measurement of COA←X and B←X oscillator
strengths.9,10 Briefly, a XeCl excimer laser~3080 Å, 10 Hz!a!Deceased, 5 December 2000.
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was used to pump a dye laser~p-terphenyl in dioxane!
equipped with an intracavity e´talon. The near-uv output of
the dye laser~;3460 Å! was focused into a cell containing
Kr, at pressures ranging from 40 to 100 Torr, adjusted to
optimize the phase matching for the third-harmonic-
generation process. The generated radiation was then passed
through a 0.2-m scanning vuv monochromator in order to
remove the fundamental near-uv radiation. The bandwidth of
the resulting vuv radiation was estimated to be;0.15 cm21

full width at half maximum~FWHM! by fitting the absorp-
tion line shapes of narrow, near-Doppler-broadened low-
rotation lines near the18O2 F←X(1,0) subband heads. A
similar value resulted from the fitting of Doppler-broadened
lines in the nearby COB←X(0,0) band. The known wave-
lengths for these CO lines,11 which lie at the short-
wavelength limit of theF←X(1,0) scans, were also used to
provide absolute calibration of the dye-laser wavelength
scale, the linearity of which was calibrated using the known
ground-state combination differences for18O2 .12

vuv radiation leaving the monochromator was divided
into two beams by a slotted Al beam splitter, the reflected
beam serving as a monitor of the laser intensity, while the
transmitted beam passed through a LiF-windowed,
temperature-controllable absorption cell before being de-
tected. Both beams were detected by solar-blind photomulti-
pliers. Samples of O2 ~BOC 99.99% O2, natural isotopic
abundance; and ICON 97 at. %18O! were used at pressures
between 0.01 and 1.0 Torr, chosen to produce transmittances
at line centers between 30% and 70%. In the case of mea-
surements on normal O2 , the dye-laser intracavity e´talon
was not employed, resulting in an effective resolution of
;0.5 cm21 FWHM. Since, as will be seen in Sec. IV, the
16O2 linewidths are much larger than those for18O2 , this did
not result in any instrumental degradation of the16O2 spec-
tra. Absolute O2 pressures in the absorption cell were moni-
tored by a variable-capacitance manometer. Measurements
were performed both at room temperature~298 K! and liquid
nitrogen (LN2) temperature~effective cell temperature 79
K!.

Output pulses from the monitor and detector photomul-
tipliers were processed by a boxcar system, with averaging
over 100 laser shots. For each datum point, the averaged
detector signal was divided by the averaged monitor signal in
order to account for the shot-to-shot fluctuations inherent in
the generated vuv signal. Before and after each absorption
scan, empty-cell signals were recorded: absolute cell trans-
mittances were determined by dividing the full-cell ratios
~detector/monitor! by the empty-cell ratios for each datum
point. The resulting signal-to-noise ratio in a typical scan
was about 40:1. The level of amplified spontaneous emission
in the generated vuv radiation was expected to be less than
3%, as determined from measurements on the Doppler-
broadened lines of the COB←X(0,0) system.10 Absolute
photoabsorption cross sections~systematic uncertainty;3%,
statistical uncertainty typically;5%! were determined from
the corrected transmittances using the Beer–Lambert law.

III. THEORETICAL METHOD

As mentioned in Sec. I, theF state of O2 is a mixed state
involving the boundpgnpsu

3Pu Rydberg states withn
53 and 4, and thepgsu 1 3Pu repulsive valence state. Di-
abatic potential-energy curves for these states are shown in
Fig. 1 ~dashed curves!.7,13 The molecular-orbital~MO! con-
figurations of the Rydberg and valence states differ only by a
single orbital. In the diabatic basis, there are strong Rydberg-
valence interactions,1 leading to the adiabatic potential-
energy curves7,13 in Fig. 1 ~solid curves!, which show
strongly avoided crossings. In an adiabatic picture, the low-
est Rydberg-valence interaction is an example of Rydberg-
ization, the 3su valence MO becoming the 3psu Rydberg
MO as the internuclear distanceR decreases.1 The double-
minimum adiabatic potential in Fig. 1 is associated with the
F 3Pu state. It should be noted that the first two vibrational
levels in theF-state potential are of inherently different char-
acter, with F(v50) located principally in the outer well,
while F(v51) spans both wells.

While the adiabaticity parameter14 for the n53
Rydberg-valence crossing,z52.9,6 is significantly greater
than unity, implying essentially adiabatic behavior for theF
state, it is, nevertheless, the residual nonadiabatic coupling
between the adiabatic states that is primarily responsible for
the predissociation of theF-state levels. This type of predis-
sociation is not readily treatable using perturbative tech-
niques, but is amenable to a CSE treatment of the interacting
Rydberg and valence states.15–17 Here, for computational
convenience, we employ adiabatic basis of interacting Ry-
dberg and valence states, since the corresponding electronic
properties can be expected to change smoothly withR.

Details of the CSE method employed can be found in
Ref. 18. Briefly, the cross section, in cm2, for single-photon
absorption from a given rovibrational level of an initial un-
coupled electronic state into then coupled statesk, at an
energyE, and with rotationJ is given by

FIG. 1. Diabatic ~dashed curves! and adiabatic~solid curves! potential-
energy curves for the interacting Rydberg and valence3Pu states of O2 . The
energy scale is referred to the minimum in theX 3Sg

2 potential~not shown!.
The lowest two vibrational levels of theF state for16O2 are also indicated.
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sEJ;v9J951.23310223gn z^xEJ~R!uM uxv9J9~R!& z2. ~1!

In Eq. ~1!, n is the transition energy, in cm21, g is a degen-
eracy factor,xEJ(R) is the coupled-channel radial wave-
function matrix,xv9J9(R) is the radial wave function of the
initial state, and the transition matrix elements are in atomic
units. The elements of then31 rotronic ~rotational-
electronic! transition-moment vectorM are the products of
appropriately normalized electronic transition moments
Mk(R) and rotational matrix elements of the direction-
cosine operator. The coupled-channel radial wave-function
matrix xEJ(R) is the solution of the diabatic-basis coupled
Schrödinger equations, expressed in matrix form,

H I
d2

dR2 1
2m

\2 @EI2V~R!2Vrot~R!#J xEJ~R!50. ~2!

In Eq. ~2!, m is the molecular reduced mass,I is the identity
matrix, V(R) is the symmetricn3n diabatic potential ma-
trix, the diagonal elements of which are the diabatic elec-
tronic potential-energy curvesVk(R), andVrot(R) is a diag-
onal matrix with elements given by matrix elements of the
rotational part of the molecular Hamiltonian. The couplings
between the interacting electronic states are given by the
off-diagonal elements ofV(R), which, for example, may
contain the effects of electrostatic, rotational, and spin-orbit
interactions.

If the electronic wave functions are expressed in the
Hund’s case~a! e/ f -parity basis,1 then the only nonzero ele-
mentsMk(R) arise from dipole-allowed transitions between
case~a! basis states. For a specific temperature, the total
cross section can be expressed as the sum of cross sections
into the upper-statee andf levels, each of which is calculated
separately as a Boltzmann average of Eq.~1! over the initial
distribution of ground-state vibrational, rotational, and fine-

structure levels. In this work, however, we restrict ourselves
to representative single-line cross-section calculations for
specificJ5J9.

A basic three-state diabatic CSE model,7,13 adapted from
the six-state model of Englandet al.,6 is used here to de-
scribe the interacting3Pu states. In this model,7,13 the diaba-
tic Rydberg and valence3Pu potential-energy curves of Fig.
1 form the diagonal elements of the potential matrixV(R),
the only nonzero off-diagonal elements of which are the
Rydberg-valence couplings~taken to beR-independent! of
7034 and 3403 cm21, respectively, for the 3psu and 4psu

states. The model diabatic3Pu←X 3Sg
2 electronic transition

moments are taken from Ref. 13.S-uncoupling interactions
between the3PuV sublevels are ignored, separate calcula-
tions for eachV being performed by shifting the potential-
energy curves in energy to reproduce the diagonal spin–orbit
splitting. This approach should be satisfactory for lowJ,
where the3Pu states approach Hund’s case~a! angular-
momentum coupling.

Cross sections for excitation into the coupled3Pu states
of isotopic O2 were calculated in the energy range of theF
←X(1,0) band using Eqs.~1! and ~2! with these diabatic
model parameters. The diabatic coupled-channel radial wave
functions xEJ(R), normalized according to the method of
Mies,15 were obtained by solving Eq.~2! using the renormal-
ized Numerov method of Johnson.19 The ground-state vibra-
tional wave function xv9J9(R) was calculated using a
Rydberg–Klein–Rees potential-energy curve for theX 3Sg

2

state constructed from the spectroscopic constants of
Cosby.20 CSE estimates of the predissociation linewidths
were obtained by fitting Lorentzian profiles to the computed
cross sections.

As we show in Sec. IV B, the rotational part of the
F-state predissociation cannot be explained by the nonadia-
batic 3Pu mechanism alone, and it becomes necessary to
consider indirect3Su

2 predissociation channels. In the energy
region of F(v51), the E 3Su

2 state of O2 is also a mixed

FIG. 2. Diabatic ~dashed curves! and adiabatic~solid curves! potential-
energy curves for the interacting Rydberg and valence3Su

2 states of O2 . As
in Fig. 1, the energy scale is referred to the minimum in theX 3Sg

2 potential
~not shown!. The lowest four vibrational levels of theE state for16O2 are
also indicated.

FIG. 3. Overall experimental room-temperature photoabsorption cross sec-
tions for the F 3Pu←X 3Sg

2(1,0) bands of isotopic O2 , highlighting a
strong isotopic effect in the apparent linewidths. Origins for theV850, 1,
and 2 subbands are indicated. The18O2 cross section has been raised by
2.5310217 cm2, for clarity.
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state involving the boundpgnppu
3Su

2 Rydberg states with
n53 and 4, and the repulsivepu

3pg
3 3Su

2 valence state, but,
in contrast to the case for the3Pu states, the MO configura-
tions for these Rydberg and valence states differ by two or-
bitals. Nevertheless, there remain strong Rydberg-valence in-
teractions, as mentioned in Sec. I. Diabatic and corres-
ponding adiabatic potential-energy curves for the interacting
3Su

2 states are shown in Fig. 2. The lower adiabatic curve in
Fig. 2 can be associated with the well-knownB 3Su

2 state of
O2 , while the upper adiabatic curve can be associated with
theE state of interest here, theE(v53) level predicted to lie
close to theF(v51) level. However, it should be noted that
the adiabaticity parameter for the lowest3Su

2 Rydberg-
valence crossing isz'1.3, implying character intermediate
between adiabatic and diabatic for theE-state levels in this
region, i.e., the coupled-state energy levels will not closely
coincide with the eigenenergies of the adiabaticE state of
Fig. 2. This intermediate Rydberg-valence coupling is well
known to produce very strong predissociation of theE-state

levels by theB-state continuum.4 Once again, however, it is
necessary to use CSE methods to accurately treat this predis-
sociation.

We employ a basic three-state diabatic CSE model simi-
lar to that of Ref. 13, but with slightly modified parameters,
to describe the interacting3Su

2 states. In this model,21 the
diabatic Rydberg and valence3Su

2 potential-energy curves
are those shown in Fig. 2, the Rydberg-valence couplings are
4037 and 2011 cm21, respectively, for the 3ppu and 4ppu

states, and the diabatic3Su
2←X 3Sg

2 electronic transition
moments are taken from Ref. 13. Cross sections for excita-
tion into the coupled3Su

2 states of isotopic O2 were calcu-
lated in the energy range of theF←X(1,0) band using these
model parameters and the CSE method described above.

Finally, the separate three-state models for the coupled
3Pu and3Su

2 states were combined together into a six-state
model in an effort to explain rotational aspects of theF(v
51)-state predissociation. This was accomplished simply by
including the L -uncoupling interactions expected to occur
between thenpsu and nppu members of annp Rydberg

TABLE I. Term values for theF 3PuV(v51,J) levels of isotopic O2 , in cm21.

J

16O2
a,b 18O2

a,c

V50 V51 V52 V50 V51 V52

0 86 652.2d 86 616.50
1 86 655.1e 86 732.8d 86 618.99 86 697.61
2 86 661.2 86 739.1 86 851.5 86 624.64 86 703.19 86 815.78
3 86 670.0 86 748.9 86 861.2 86 632.54 86 711.86 86 824.36
4 86 682.3 86 761.0 86 874.0 86 643.67 86 722.86 86 835.79
5 86 697.0 86 777.4 86 890.1 86 657.01 86 737.49 86 850.08
6 86 715.3 86 795.5 86 909.4 86 673.58 86 753.71 86 867.21
7 86 736.0 86 818.9 86 931.8 86 692.38 86 774.40 86 887.23
8 86 760.2d 86 842.6 86 957.5 86 714.31 86 795.87 86 910.03
9 86 787.9 86 873.0 86 986.5 86 738.57 86 822.66 86 935.80

10 86 902.1 87 018.5 86 765.91 86 849.27 86 964.28
11 86 851.7 86 939.8e 87 053.9 86 795.70 86 882.30 86 995.85
12 86 974.7 87 092.2 86 828.46 86 913.87 87 029.87
13 87 134.3 86 863.84 86 953.16 87 067.35
14 87 178.8 86 901.86 86 989.81 87 106.88
15 87 227.5 86 943.02 87 035.24 87 150.34
16 87 278.0 86 986.15 87 077.04 87 195.30
17 87 333.6d 87 033.08d 87 128.67 87 244.74
18 87 390.1 87 081.43d 87 175.57 87 295.08
19 87 452.6 87 134.28d 87 233.05d 87 350.60
20 87 406.27
21 87 584.5 87 246.37d 87 467.85
22 87 652.1e 87 406.13 87 528.79
23 87 369.28 87 596.49
24 87 801.9e 87 662.61
25 87 736.56
26 87 964.8e

27 87 888.06
29 88 050.72

aTerm values are referred to energy zeros defined by the hypothetical levelsX 3Sg
2(v50,J5N50,F2), respec-

tively, for each isotopomer. Ground-state terms used were from Ref. 25, for16O2 , and Ref. 12, for18O2 .
bApparent linewidths*1.6 cm21 FWHM; calibration uncertainty;0.2 cm21; relative uncertainties in terms
from isolated lines 0.2–0.5 cm21.

cApparent linewidths;0.2–0.6 cm21 FWHM; calibration uncertainty;0.2 cm21; relative uncertainties in
terms from isolated lines&0.1 cm21.

dTerm value from shoulder~s! in spectrum.
eTerm value from blended feature~s! in spectrum.
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complex1 as off-diagonal elements in the potential matrix.
Specifically, these rotation ande/ f -parity-dependent rotronic
matrix elements are22

^3Pu0 ,J, f
euHJLu3Su1

2 ,J, f
e&57

1

2mR2 A2J~J11!,

^3Pu1 ,J,euHJLu3Su0
2 ,J,e&52

1

mR2 AJ~J11!, ~3!

^3Pu2 ,J, f
euHJLu3Su1

2 ,J, f
e&52

1

2mR2 A2J~J11!,

where HJL52J2L1/(2mR2). In the picture described by
this model, theF-state predissociation is caused by a combi-
nation of a direct nonadiabatic mechanism involving predis-
sociation by the3Pu valence state, together with an indirect
rotational mechanism involving predissociation by the3Su

2

valence state. Cross sections computed using this full six-
state CSE model were used to determine predissociation
linewidths for comparison with the experimental values in
Sec. IV B.

IV. RESULTS AND DISCUSSION

Room-temperature photoabsorption cross sections for
the F←X(1,0) bands of16O2 and18O2 are shown in Fig. 3.
The spectrum for the heavier isotopomer is a composite of
many individual, overlapping e´talon scans. The resolution of
neither spectrum in Fig. 3 is significantly limited by instru-
mental effects. Thus, it is immediately apparent that the ro-
tational lines for 18O2 are much narrower than those for
16O2 , implying a much lower rate of predissociation for
F(v51) in the heavier isotopomer. Such a strong isotopic
dependence is unusual for a low-vibrational level. Conse-
quently, it is confirmed that apparent intensity anomalies ob-
served previously in low-resolution studies of this band6

were indeed caused by the well-known problems of deter-
mining the intensities of very narrow lines using inadequate
instrumental resolution.

A. Structure

The subband and rotational-branch structures observed
in Fig. 3 are consistent with expectation for a3Pu(regular)
←3Sg

2 transition. For each isotopomer, however, the central
(V851) subband is significantly off-center, corresponding
to a downward shift in energy ofF 3Pu1 by ;20 cm21. It
has been shown in detail elsewhere,23 for 16O2 , that this
effect is due to spin–orbit interaction with theh 1Pu1(v
50) state, which lies;370 cm21 higher in energy. In the
case of18O2 , all 27 rotational branches expected for a3P
←3S transition were observed in either the room- or
LN2-temperature spectra. In the case of16O2 , despite more
severe line blending, only six branches~P1 , PQ12, PR13,
P2 , Q2 , andR2! remained unseen.

We have performed full assignments of theF←X(1,0)
rotational structure for both isotopomers, employing both the
room- and LN2-temperature spectra.24 The experimental
wave numbers were combined with ground-state rotational
terms~Veseth and Lofthus25 for 16O2 , Steinbach and Gordy12

for 18O2! to determine term values for theF(v51) state. The
results are given in Table I, referred to energy zeros defined
by the hypothetical levelsX 3Sg

2(v50,J5N50,F2), re-
spectively, for each isotopomer. The tabulated terms repre-
sent averages obtained using as many branches as possible,
with an emphasis on unblended lines.

Reduced term values, obtained from Table I by subtract-
ing appropriate linear functions ofJ(J11), so as to empha-
size the significantL doubling, are shown in Fig. 4. At low
values ofJ, the behavior observed is characteristic of a3P
state close to Hund’s case~a!, with energy differences be-
tween thee levels ~odd J, solid circles in Fig. 4! and thef
levels ~evenJ, open circles! approximately constant, forV

FIG. 4. Experimental reduced term values~see text! for
theF 3PuV(v51,J) levels of isotopic O2 , emphasizing
L doubling. Solid circles:e levels. Open circles:f lev-
els. Results of a fit to the3P Hamiltonian of Brown and
Merer ~Ref. 26! are also shown. Solid curves:e levels.
Dashed curves:f levels.
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50, and with quadratic and quartic dependences onJ, for
V51 and 2, respectively.26 However, for increasingJ val-
ues, there are rapid deviations from this behavior.

We have least-squares fitted the terms in Table I to the
3P Hamiltonian of Brown and Merer,26 obtaining the spec-
troscopic parameters listed in Table II. The corresponding
fitted ~reduced! term values for thee and f levels are shown
in Fig. 4 as solid and dashed curves, respectively, and are
compared with the experimental values. Where the relative
uncertainty in a fitted parameter was excessively large, that
parameter was held fixed during the final fitting procedure.
Because of the restricted range of rotational levels observed
in the V50 and 1 sublevels of16O2 , for example, no
centrifugal-distortion parameters could be determined. The
quality of fit obtained was good for both isotopomers, with
root-mean-square deviations of 0.15 and 0.10 cm21, respec-
tively, for 16O2 and18O2 . Nevertheless, there remained some
systematicdiscrepancies for each isotopomer, especially in
the V50 sublevel of16O2 . These discrepancies tended to
skew the fitted value of theL-doubling parametero1p
1q, so this parameter was fixed during the final fits at a
nonzero value determined by the low-rotatione- f splitting
for V50. Since the Brown and Merer26 Hamiltonian is ex-
pected to fail only in the case of perturbation by a close-lying
state, the residual systematic discrepancies observed here
suggest a possible perturbation, which is strongest in the case
of the V50 sublevel of16O2 .

The anomalous nature of theF state, apparent in its vi-
brational splittings,6 is supported by the principal spectro-
scopic parameters determined here and shown in Table II.
For example, the fitted origins imply an isotopic shift of 34.9
cm21, much smaller than expected for av51 level, while
the ratio27 of isotopic rotational constantsBr5B18/B16

50.8945(12) differs significantly from the value expected
for a well-behaved state, i.e., the ratio of the reduced masses
for the two isotopomers,m16/m1850.8886.28 The main rea-
son for this behavior derives from the strongly mixed nature
of theF(v51) level, described in Sec. III. Inspection of Fig.
1 shows thatF(v51) should have significant 4psu

3Pu(v

50) character, helping to explain the low value of the isoto-
pic shift. The close similarity observed between the fitted
isotopic values of the diagonal spin–orbit constantA, despite
this mixing, can be explained by noting that the mixed states
are expected to have similar, isotopically independent values
of A5apg

, whereapg
is a molecular spin–orbit parameter1

determined by their commonpg MO. Finally, we note that
the fitted values ofl reflect primarily theF 3Pu1(v51)
;h 1Pu1(v50) spin–orbit perturbation described above,29

the slightly larger value for16O2 arising probably due to the
smaller difference in energy between the perturbing levels.

B. Predissociation

In addition to the much lower overall degree of predis-
sociation for the heavier isotopomer implied by the relative
linewidths in Fig. 3, two further conclusions regarding de-
tails of the predissociation ofF(v51) follow from a close
examination of the spectra. First, some branches exhibit a
significant increase in linewidth with increasing rotational
quantum number. This effect is readily apparent, for ex-
ample, in Fig. 5, in which a portion of theNP13 branch from
theV850 subband of18O2 at room temperature is shown in
detail.30 Second, for both isotopomers, but more easily seen
in 16O2 , rotational transitions terminating onV51(e) levels
of the F state broaden much more rapidly with increasing
rotation than do those terminating on the correspondingV
51( f ) levels. This effect is illustrated clearly in the
LN2-temperature spectrum of16O2 shown in Fig. 6, where
the SR21(5) line, terminating on theV51, J57, e-parity
level, is much broader than theRQ21(9) line, which termi-
nates on theV51, J510, f-parity level.

In order to obtain a complete picture of the
F(v51)-state predissociation, we have performed a detailed
linewidth analysis on the room- and LN2-temperature spectra
for both isotopomers. Segments of the experimental cross
sections were least-squares fitted to synthetic cross sections
in which each rotational line was represented by a Voigt
profile. The line centers, strengths, and Lorentzian~predisso-

FIG. 5. A portion of theNP13 branch in theF 3Pu0←X 3Sg
2(1,0) subband

of 18O2 , at room temperature, demonstrating a significant increase in line-
width with increasing rotational quantum number.

TABLE II. Fitted spectroscopic parameters for theF 3Pu(v51) state of
isotopic O2 , in cm21.

16O2
18O2

n0
a 86 740.23~11!b 86 705.30~9!

B 1.5663~16! 1.4010~12!
D3106 0.0c 1.9~19!
A 98.01~11! 98.07~8!
l 10.25~11! 9.89~8!
g 0.12~6! 0.12~3!
AD 0.0 20.0026~12!
lD 0.0 0.0
o1p1q 0.05 0.10
p12q 20.05~7! 20.034~9!
q 20.022~4! 20.0166~10!

aExperimental terms of Table I were fitted to the3P Hamiltonian of Ref. 26
~zero-energy references as in footnote a of Table I!.

b3s uncertainties of the fit are given in parentheses, in units of the last-
quoted decimal place. Origin uncertainty does not include absolute calibra-
tion uncertainty.

cParameters without uncertainties fixed during fit.
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ciation! width componentsGL were allowed to vary freely in
the fitting procedure, while the Gaussian width component
was held fixed at the appropriate Doppler width~;0.19
cm21 FWHM at 298 K,;0.10 cm21 FWHM at 79 K!. The
background cross sections were fitted by a low-order poly-
nomial in energy and instrumental effects were allowed for
by convolution ~in transmission! with a Gaussian of 0.15
cm21 FWHM.31 The results of a typical fitting procedure are
shown in Fig. 6, where the fit~solid curve! is seen to accu-
rately reproduce the experimental cross section~open
circles!.

The final results of the predissociation-width analysis are
summarized in Table III and illustrated in Fig. 7. Each width
entry in Table III represents a weighted average of separate
results for all analyzable lines terminating on the given
upper-state level, preference being given to results from un-
blended lines, where possible. The general observations
mentioned previously are confirmed by the detailed analysis.
First, the predissociation widths for16O2 greatly exceed
those for18O2 . Second, for16O2 , the V50 andV51(e)
widths increase rapidly with increasing rotation, while the
V52 widths increase less rapidly and theV51( f ) widths
hardly at all. Similar behavior is observed for18O2 , but in
this case there is an underlying parity-independentJ depen-
dence of theV51( f ) andV52 widths ~and, possibly, the
otherV components!, which is of significantly greater rela-
tive magnitude than is the case for16O2 , making thee- f
width dependence forV51 more difficult to detect.

In order to determine the rotationless predissociation
widths G0 for the various isotopic sublevels, we have fitted
low-order polynomials of the formGL(J)5G01GJJ(J11)
1... to the experimental widths. The order of the polynomial
varied from linear, for16O2 where the accessible range ofJ is
restricted, to cubic, for theV50 and 2 sublevels of18O2 .
The results, listed in Table IV, show that there is no statisti-

cally significant sublevel dependence ofG0 , and yield
V-averaged values of 1.56~6! cm21 FWHM and 0.03~3!
cm21 FWHM, respectively, for16O2 and 18O2 , correspond-
ing to an isotopic width ratioG0

r 5G0
18/G0

1650.019(19). This
is a startlingly strong isotopic effect. In the case of the
E 3Su

2(v50) state of O2 , another example of anomalous
isotopic predissociation, the corresponding width ratio is
0.30 ~0.16 for 16O 18O!.4 The present anomalous isotopic ef-
fect comes from the class ofnonadiabatic predissociation,
discussed by Lefebvre-Brion and Field,1 and illustrated by
examples in theC 2Su

1(v>3) state of N2
1 where width ra-

tios G r5G15/G14'0.1 occur.32 As discussed in Sec. III, in an
adiabatic picture~solid curves in Fig. 1!, the F-state predis-
sociation occurs through residual nonadiabatic interactions
and, as demonstrated in detail by Lefebvre-Brion and Field,1

strong isotopic effects can occur in this type of predissocia-
tion. Using the CSE model of the3Pu Rydberg-valence in-
teractions described in Sec. III, we have computedF(v
51) rotationless predissociation widths, also listed in Table
IV, of 1.2 cm21 FWHM and 0.006 cm21 FWHM, respec-
tively, for 16O2 and 18O2 , corresponding to a width ratio
G0

r 50.005. These computed values are in satisfactory agree-
ment with experiment, especially considering that the3Pu

CSE model described in Sec. III and employed here has been
optimized by fitting to a wide range of spectroscopic data
covering a significant energy range,13 with no special weight-
ing in favor of theF(v51) level which is the subject of this
work.

While, as we have shown, the rotationless isotopicF(v
51) widths can be explained in terms of a nonadiabatic
predissociation mechanism involving only the Rydberg and

FIG. 6. Narrow region in theF 3Pu1←X 3Sg
2(1,0) subband of16O2 , at

LN2 temperature, highlighting thee/ f -parity dependence of linewidth for
this subband. Open circles: experimental photoabsorption cross section.
Solid curve: model cross-section fit. The fitted Lorentzian width of the
RQ21(9) line, corresponding to an upper-stateJ510, f-parity level, is 1.8
cm21 FWHM, less than half of the value 3.8 cm21 FWHM for the SR21(5)
line, corresponding to an upper-stateJ57, e-parity level.

TABLE III. Experimental predissociation widths for theF 3PuV(v51,J)
levels of isotopic O2 , in cm21 FWHM.

J

16O2
18O2

V50 V51 V52 V50 V51 V52

0 2.28~48!a 0.01~13!
1 0.06~4!
2 2.04~30! 1.61~23! 1.58~24! 0.00~7! 0.06~3! 0.05~4!
3 1.56~14! 0.02~3! 0.05~2! 0.03~2!
4 1.58~22! 1.96~37! 0.03~10! 0.09~4! 0.13~6!
5 2.68~14! 2.92~46! 0.06~3! 0.11~5! 0.02~2!
6 1.65~15! 0.09~6! 0.11~2! 0.19~8!
7 4.34~51! 3.82~19! 0.18~4! 0.14~4! 0.03~2!
8 1.68~30! 0.17~2! 0.09~3! 0.15~3!
9 6.16~279! 5.23~41! 1.80~7! 0.28~5! 0.16~4! 0.25~4!

10 1.80~12! 0.25~4! 0.14~4! 0.20~3!
11 2.14~16! 0.37~8! 0.20~7!
12 2.75~26! 0.34~7! 0.13~4! 0.24~3!
13 2.25~23! 0.47~13! 0.23~7! 0.19~3!
14 0.46~18! 0.18~5! 0.22~3!
15 2.90~67! 0.41~15! 0.38~10! 0.08~2!
16 0.24~7! 0.27~7!
17 0.41~17! 0.21~5!
18 0.20~6! 0.31~6!
20 0.28~3!
21 0.28~12!
23 0.61~28! 0.26~12!

a3s uncertainties are given in parentheses, in units of the last-quoted deci-
mal place.
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valence states of3Pu symmetry, such a mechanism predicts
no significant variation of width with rotation,e/ f parity, or
sublevel component. Since, for nonzeroJ, the experimental
widths in Fig. 7 exhibit significant dependencies on these
parameters, another predissociation mechanism must be
found to explain the rotational broadening. The clue to this
explanation lies in the dramatic difference in rotational
broadening~especially for16O2! observed between thee and
f levels of theV51 component@see Fig. 7~b!#. According to
the selection rules for perturbations,1 only a 3Su0

2 ~e-parity!
state can selectively perturb3Pu1(e) levels, through a
J-dependentL -uncoupling interaction.33 Thus, it is certain
that the rotational broadening of theF 3Pu1(v51,e) levels
is caused by anL -uncoupling interaction with a~pre!disso-
ciative 3Su0

2 state. Analogous interactions between the3Su1
2

and 3Pu0,2 sublevels will produce a degree of non-parity-

dependent rotational broadening in theF 3Pu0,2(v51) sub-
levels.

Using the CSE model of the3Su
2 Rydberg-valence inter-

actions described in Sec. III, we have computed the rotation-
less 3Su

2←X 3Sg
2 cross sections in the region of theF

←X(1,0) band, for each isotopomer. The results are com-
pared in Fig. 8 with experimental LN2-temperature total pho-
toabsorption cross sections.34 In the case of16O2 , the CSE
calculations predict a weak, broad predissociating resonance,
lying between theV850 and 1 subbands of theF
←X(1,0) transition, which is associated with the transition
into the E 3Su

2(v53) state. For this isotopomer, there is
some circumstantial evidence for the accuracy of the calcu-
lations in the shape of the high-energy wing in the experi-
mental cross section, but it is not possible to unambiguously
detect theE←X(3,0) transition directly due to the overlap
with F←X(1,0). On the other hand, while the calculated
3Su

2←X 3Sg
2 cross section for18O2 in Fig. 8 predicts a sig-

nificantly weaker resonance than that for16O2 , the different
isotopic shift of the F←X(1,0) band results in theE
←X(3,0) band being visible in the experimental cross sec-
tion as a weak, broad feature near 86 530 cm21 on the low-
energy wing ofF←X(1,0). This represents the first experi-
mental observation of a transition into theE(v53) level of
O2 and serves to confirm the reliability of the CSE calcula-
tions for the 3Su

2 states. The extreme weakness of theE
←X(3,0) band for each isotopomer is due to a destructive
interference effect between the Rydberg and valence transi-
tion amplitudes, an effect first predicted and discussed in
Ref. 13. The computed positions of the isotopicE←X(3,0)
bands in Fig. 8 qualitatively support the observed pattern of
F(v51) rotational broadening, the closerF(v51);E(v
53) coincidence in energy for16O2 leading to greater broad-
ening, and their location on the low-energy side ofF
←X(1,0) leading to a lesser degree of broadening for the
V52 components of each isotope.

FIG. 7. Isotopic predissociation widths for the
F 3PuV(v51,J,e/ f ) levels of O2 . Circles: Experimen-
tal widths for16O2 . Triangles: Experimental widths for
18O2 . Curves: Computed CSE model widths.~a! V
50. No e/ f -parity dependence.~b! V51. Solid sym-
bols and curves:e parity. Open symbols and dashed
curves:f parity. ~c! V52. No e/ f -parity dependence.

TABLE IV. Comparison between experimental and computed CSE model
F 3Pu(v51) predissociation widths for isotopic O2 . Both the experimental
and computed Lorentzian linewidths were fitted to polynomials of the form:
GL(J)5G01GJJ(J11)1¯ . The rotationless and rotation-dependent
widths,G0 andGJ , respectively, are in cm21 FWHM.

Iso. V( f
e)

G0 GJ

Expt. Calc. Expt. Calc.

16O2 0 1.8~9!a 1.2 0.040~2!b 0.062
1(e) 1.7~5! 1.2 0.041~2!b 0.084
1( f ) 1.56~6! 1.2 0.0021~6!b 0.0000
2 1.5~4! 1.2 0.004~2!b 0.012

18O2 0 0.00~3!c 0.006 0.0030~7! 0.0034
1(e) 0.04~4! 0.006 0.0014~10! 0.0011
1( f ) 0.07~5! 0.006 0.0006~8! 0.0000
2 0.03~10! 0.006 0.0009~13! 0.0000

a3s uncertainties are given in parentheses, in units of the last-quoted deci-
mal place.

bG0 fixed at 1.56 cm21 FWHM during fitting procedure.
cThe fitted intercept was20.02~5! cm21 FWHM.
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Using the combined, six-state3Pu;3Su
2 CSE model,

with the L -uncoupling interaction matrix elements given in
Eq. ~3!, we have computed isotopic predissociation widths
for F(v51) as functions of rotation,e/ f parity, andV sub-
level. The results, also shown in Fig. 7, are in reasonable
overall agreement with the experimental values and repro-
duce all of the principal dependencies described above. De-
tailed comparison is made between the computed and experi-
mental low-rotational linear slopesGJ in Table IV, where it
is seen that the computed values exceed the experimental
values significantly for16O2 , V50, 1(e), and 2, but are in
quite good agreement for18O2 , V50 and 1 ~e2 f differ-
ence!. The greater discrepancies for16O2 are probably re-
lated to the closer energy degeneracy betweenF(v51) and
E(v53) for this isotopomer. In this case, the results will be
not only highly sensitive to the exact position of theE(v
53) perturber, but also to theshapeof its broad profile.
Since this resonance cannot be observed directly for16O2 , it
is difficult to optimize its characteristics in the CSE model.
Regardless of these discrepancies in detail, it is clear that the
major aspects of the variations in width with rotation,e/ f
parity, andV sublevel are due to anindirect ~accidental!
predissociation involvingL -uncoupling interactions between
F(v51) and theE(v53) predissociating resonance. Never-
theless, there remain minor effects that cannot be explained
by this mechanism, in particular, the residual increases in
width with rotation for 16O2 , V51( f ), and 18O2 , V
51( f ) and 2. FurtherL -uncoupling interactions between
F(v51) and predissociated levels of the3Du components of
the np Rydberg complexes, which certainly exist in this re-
gion of energy, may provide an explanation for the remaining
minor rotational predissociation.

The sameF(v51);E(v53) L -uncoupling interaction
proposed as the cause of the major rotational predissociation
of F(v51) should also result in perturbations in the effec-
tive rotational constants of theF(v51) sublevels. In par-
ticular, this effect should be most readily observable as a
perturbation inDBe f5Be2Bf for the V51 sublevel, since

the f levels will remain unperturbed by the interaction, but
thee levels will be shifted to higher energies, increasingly as
J increases, by the lower-lyingE(v53) state. The experi-
mentalV51 terms shown in Fig. 4 yield effective values of
DBe f50.025(2) and 0.017~1! cm21, respectively, for16O2

and18O2 , consistent with a stronger perturbation in the case
of 16O2 where theF(v51) andE(v53) levels are in closer
proximity. Calculations performed using the combined3Pu

;3Su
2 CSE model of Sec. III imply perturbations inDBe f of

0.036 and 0.015 cm21, respectively, for16O2 and 18O2 ,
caused by theL -uncoupling interaction. As in the case of the
rotational predissociation discussed above, the calculations
exceed the experimental result for16O2 , but are in good
agreement for18O2 . Nevertheless, it is clear that both the
major rotational predissociation ofF(v51), and the parity-
dependent perturbation of theV51 sublevel, are consistent
with a single cause, namely theF(v51);E(v53) L -
uncoupling interaction. In addition, the CSE calculations
suggest that most, if not all, of the observedL doubling for
the V51 sublevel is directly attributable to the same inter-
action.

Experiments in which the O(1D) quantum yield in the
photodissociation of O2 is measured enable photodissocia-
tion branching ratios to be inferred, allowing further testing
of our suggested predissociation mechanisms for theF(v
51) state. Gibson and Lewis35 and Lee and Nee36 measured
integrated O(1D) quantum yields of 0.41~8! and 0.38, re-
spectively, over the region of theF←X(1,0) band of16O2 .
The nonadiabatic mechanism proposed here to explain the
rotationless predissociation ofF(v51), involving 3Pu

Rydberg-valence interactions, results in O(3P)1O(3P) dis-
sociation products~see Fig. 1!. However, the indirect mecha-
nism proposed to explain the major rotational predissocia-
tion, involving 3Su

2 Rydberg-valence-coupled states, results
in O(1D)1O(3P) dissociation products~see Fig. 2!. Thus, a
comparison between the rotational and rotationless predisso-
ciation rates (}GL) will result in a prediction of the O(1D)

FIG. 8. Photoabsorption cross sections in the wings of
the F 3Pu←X 3Sg

2(1,0) band of isotopic O2 . Solid
circles: experimental LN2-temperature cross
sections. Solid curves: computed CSE rotationless cross
sections for the underlying3Su

2←X 3Sg
2 transitions.

Spectral features are labeled according to the upper
states of the corresponding transitions. Evidence for the
E 3Su

2(v53) state, suggested herein to be responsible
for the rotational predissociation ofF 3Pu(v51), is
provided by good agreement between the underlying
experimental and computed cross sections in the high-
energy wing for16O2 , and also, most clearly, by the
observation of a weak peak, near 86 530 cm21, in the
low-energy wing for18O2 .
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1O(3P) predissociation branching ratio, equivalent to the
experimental O(1D) quantum yield.37 At room temperature,
the most probable ground-state rotational level populated is
N9'9. If we takeJ59, G051.56 cm21 FWHM, and use the
GJ values for16O2 , V50, 1(e), and 2 from Table IV, we
obtain O(1D)1O(3P) predissociation branching ratios of
0.70, 0.70, 0.0, and 0.19, for theV50, 1(e), 1(f ), and 2
sublevels, respectively, or a sublevel-averaged value of
0.41,38 in good agreement with the experimental O(1D)
quantum yield.35,36 The calculated sublevel distribution of
the O(1D)1O(3P) predissociation branching ratio is also in
agreement with the experimental observations which show
the O(1D) signal peaking under theV850 and 1
subbands.35,36 Thus, independent experimental measure-
ments of the O(1D) photodissociation quantum yield support
both the present predissociation width analysis and the sug-
gested rotationless and major rotational predissociation
mechanisms. Elucidation of the minor rotational predissocia-
tion mechanisms, e.g., for16O2 , V51( f ), and 18O2 , V
51( f ) and 2, might, perhaps, be assisted by further mea-
surements of the O(1D) quantum yield, for both isoto-
pomers, over a wide range of temperatures, and with signifi-
cantly higher instrumental resolution.

C. Oscillator strength

Using the relationshipf 51.1331012 *s(n)dn, and in-
tegrating over theF←X(1,0) room-temperature band cross
sections, we obtain the experimental oscillator strengthsf 16

51.37(5)31023 and f 1851.11(10)31023.39 The oscillator
strength for16O2 has been corrected downwards by 3.5%, to
allow for the computed contribution from the coincidentE
←X(3,0) transition~see Fig. 8!. These values are in good
agreement with those calculated using the rotationless three-
state 3Pu CSE model, f 1651.2631023 and f 1851.14
31023, both the experimental and calculated oscillator
strengths implying a significant isotope effect.

V. SUMMARY AND CONCLUSIONS

Using a tunable, narrow-bandwidth vacuum-ultraviolet
source based on third-harmonic generation from excimer-
pumped dye-laser radiation, theF 3Pu←X 3Sg

2(1,0) photo-
absorption cross sections of16O2 and 18O2 have been re-
corded in high resolution. Rotational analyses have been
performed and the resultantF(v51) term values fitted to the
3P Hamiltonian of Brown and Merer.26

An extraordinarily large rotationless isotope effect is ob-
served in theF(v51) predissociation, wherein the Lorentz-
ian linewidth components for18O2 are a factor of;50
smaller than the corresponding18O2 linewidths. This effect, a
consequence of the nonadiabatic rotationless predissociation
mechanism, is described using a coupled-channel treatment
of the strongly Rydberg-valence-mixed3Pu states.

SignificantJ, e/ f -parity, and sublevel dependencies ob-
served in the isotopicF(v51) rotational widths are found to
derive from an indirect predissociation mechanism involving
an accidental degeneracy with theE 3Su

2(v53) level, itself
strongly predissociated by3Su

2 Rydberg-valence interac-
tions, together withL -uncoupling ~rotational! interactions

between the Rydberg components of theF and E states.
Transitions into theE(v53) level are observed directly for
the first time, specifically in the18O2 spectrum.

These proposed rotationless and major rotational predis-
sociation mechanisms are consistent with independent ex-
perimental measurements of theF(v51) predissociation
branching ratios.35,36 However, further investigations are re-
quired to elucidate the mechanism for minor residualF(v
51) rotational predissociation~maximum linewidths&0.3
cm21 FWHM!, possibly involving3Du states, which is inex-
plicable using the present coupled-channel model.
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