2,427 research outputs found

    Low-voltage Ge avalanche photodetector for highly sensitive 10Gb/s Si photonic receivers

    Get PDF
    We demonstrate low-voltage germanium waveguide avalanche photodetectors (APD) with gain-bandwidth product of 88GHz. A 7.1dB sensitivity improvement is demonstrated for an APD wire-bonded to a 10Gb/s CMOS transimpedance amplifier, at -6.2V APD bias

    Use of high-dimensional spectral data to evaluate organic matter, reflectance relationships in soils

    Get PDF
    Recent breakthroughs in remote sensing technology have led to the development of a spaceborne high spectral resolution imaging sensor, HIRIS, to be launched in the mid-1990s for observation of earth surface features. The effects of organic carbon content on soil reflectance over the spectral range of HIRIS, and to examine the contributions of humic and fulvic acid fractions to soil reflectance was evaluated. Organic matter from four Indiana agricultural soils was extracted, fractionated, and purified, and six individual components of each soil were isolated and prepared for spectral analysis. The four soils, ranging in organic carbon content from 0.99 percent, represented various combinations of genetic parameters such as parent material, age, drainage, and native vegetation. An experimental procedure was developed to measure reflectance of very small soil and organic component samples in the laboratory, simulating the spectral coverage and resolution of the HIRIS sensor. Reflectance in 210 narrow (10 nm) bands was measured using the CARY 17D spectrophotometer over the 400 to 2500 nm wavelength range. Reflectance data were analyzed statistically to determine the regions of the reflective spectrum which provided useful information about soil organic matter content and composition. Wavebands providing significant information about soil organic carbon content were located in all three major regions of the reflective spectrum: visible, near infrared, and middle infrared. The purified humic acid fractions of the four soils were separable in six bands in the 1600 to 2400 nm range, suggesting that longwave middle infrared reflectance may be useful as a non-destructive laboratory technique for humic acid characterization

    8x14Gb/s ring WDM modulator array with integrated tungsten heaters and Ge monitor photodetectors

    Get PDF
    An 8x14Gb/s wavelength-division multiplexed Si ring modulator array is presented with uniform channel performance. Tungsten heaters and Ge monitor photodetectors at the ring modulator drop ports are co-integrated to track and control the modulation quality

    Low-voltage waveguide Ge APD based high sensitivity 10 Gb/s Si photonic receiver

    Get PDF
    We demonstrate low-voltage Ge waveguide avalanche photodetectors (APDs) with gain-bandwidth product over 100GHz. A 5.8dB avalanche sensitivity improvement (1x10(-12) bit error ratio at 10Gb/s) is obtained for the wire-bonded optical receiver at -5.9V APD bias

    The effect of fault ride-through requirements on voltage dips and post-fault voltage recovery in a Dutch distribution network

    Get PDF
    In this paper the possibility to use Decentralized Generation (DG) units for voltage support in Distribution Networks during and after a Short Circuit (S/C) event is discussed. Two types of DG units will be examined, Combined Heat-Power (CHP) plants and Doubly-Fed Induction Generators (DFIG). Earlier approaches would oblige the disconnection of these units during grid disturbances, in order to avoid unwanted conditions such as interference with the protection system and islanding [1]. Newer grid codes for Transmission Networks like [2], taking into consideration the increased share of these units in energy production have set specific Fault Ride-Through (FRT) criteria which oblige them to stay connected during SC events when they are combined to large plants directly connected to the transmission grid, such as (off shore) wind farms.. If ever more DG is connected directly to distribution grids, the same reasoning leading to applying rault ride through criteria to DG connected in large groups to transmission grids, may be applied to DG connected to distribution grids, as a loss of a a large amount of DG connected to distribution grids has the same adverse effect as using DG connected directly to the transmission grid

    Quantum Electrodynamics at Large Distances II: Nature of the Dominant Singularities

    Full text link
    Accurate calculations of macroscopic and mesoscopic properties in quantum electrodynamics require careful treatment of infrared divergences: standard treatments introduce spurious large-distances effects. A method for computing these properties was developed in a companion paper. That method depends upon a result obtained here about the nature of the singularities that produce the dominant large-distance behaviour. If all particles in a quantum field theory have non-zero mass then the Landau-Nakanishi diagrams give strong conditions on the singularities of the scattering functions. These conditions are severely weakened in quantum electrodynamics by effects of points where photon momenta vanish. A new kind of Landau-Nakanishi diagram is developed here. It is geared specifically to the pole-decomposition functions that dominate the macroscopic behaviour in quantum electrodynamics, and leads to strong results for these functions at points where photon momenta vanish.Comment: 40 pages, 11 encapsulated postscript figures, latexed, math_macros.tex can be found on Archive. full postscript available from http://theorl.lbl.gov/www/theorgroup/papers/35972.p

    Ionospheric response to the 2009 sudden stratospheric warming over the equatorial, low, and middle latitudes in the South American sector

    Get PDF
    The present study investigates the ionospheric total electron content (TEC) and F-layer response in the Southern Hemisphere equatorial, low, and middle latitudes due to major sudden stratospheric warming (SSW) event, which took place during January-February 2009 in the Northern Hemisphere. In this study, using 17 ground-based dual frequency GPS stations and two ionosonde stations spanning latitudes from 2.8°N to 53.8°S, longitudes from 36.7°W to 67.8°W over the South American sector, it is observed that the ionosphere was significantly disturbed by the SSW event from the equator to the midlatitudes. During day of year 26 and 27 at 14:00 UT, the TEC was two times larger than that observed during average quiet days. The vertical TEC at all 17 GPS and two ionosonde stations shows significant deviations lasting for several days after the SSW temperature peak. Using one GPS station located at Rio Grande (53.8°S, 67.8°W, midlatitude South America sector), it is reported for the first time that the midlatitude in the Southern Hemisphere was disturbed by the SSW event in the Northern Hemisphere.Fil: Fagundes, P. R.. Universidade do Vale do Paraíba; BrasilFil: Goncharenko, L. P.. Massachusetts Institute of Technology; Estados UnidosFil: De Abreu, A. J.. Universidade do Vale do Paraíba; BrasilFil: Venkatesh, K.. Universidade do Vale do Paraíba; BrasilFil: Pezzopane, M.. Istituto Nazionale Di Geofisica E Vulcanologia; ItaliaFil: De Jesus, R.. Universidade do Vale do Paraíba; BrasilFil: Gende, Mauricio Alfredo. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Coster, A. J.. Massachusetts Institute of Technology; Estados UnidosFil: Pillat, V. G.. Universidade do Vale do Paraíba; Brasi

    3D simulations of gas puff effects on edge density and ICRF coupling in ASDEX Upgrade

    Get PDF
    In recent experiments, a local gas puff was found to be an effective way to tailor the scrape-off layer (SOL) density and improve the ion cyclotron range of frequency (ICRF) power coupling in tokamaks. In order to quantitatively reproduce these experiments, to understand the corresponding physics and to optimize the gas valve positions and rates, simulations were carried out with the 3D edge plasma transport code EMC3-EIRENE in ASDEX Upgrade. An inter-ELM phase of an H-mode discharge with a moderate gas puff rate (1.2 x 10(22) electrons s(-1)) is used in our simulations. We simulated cases with gas puff in the lower divertor, the outer mid-plane and the top of the machine while keeping other conditions the same. Compared with the lower divertor gas puff, the outer mid-plane gas puff can increase the local density in front of the antennas most effectively, while a toroidally uniform but significantly smaller enhancement is found for the top gas puff. Good agreement between our simulations and experiments is obtained. With further simulations, the mechanisms of SOL density tailoring via local gas puffing and the strategies of gas puff optimization are discussed in the paper
    corecore