1,163 research outputs found

    Perceptual quality based packet dropping for generalized video GOP structures

    Full text link

    Metal artifact reduction for CT-based luggage screening

    Get PDF

    Attentional capture under high perceptual load.

    Get PDF
    Attentional capture by abrupt onsets can be modulated by several factors, including the complexity, or perceptual load, of a scene. We have recently demonstrated that observers are less likely to be captured by abruptly appearing, task-irrelevant stimuli when they perform a search that is high, as opposed to low, in perceptual load Scenes contain a tremendous amount of information, often more than an observer can process at one time. As a result, selective attention mechanisms have developed that allow us to focus only on the information most relevant for carrying out our goals. For example, when attempting to read a newspaper in a crowded coffeehouse, we focus on the words on the page and ignore the irrelevant sights and sounds around us. Such goal-directed attentional control allows us to focus on the task at hand without interruption from extraneous information. However, sometimes our attention is captured by salient information in the environment regardless of its relevance to our goals. This type of stimulus-driven attentional capture is ubiquitous and can cause us to shift away from our primary goals and attend to information outside of our current focus

    Evolution of a Surgeon: A 40-year Perspective

    Full text link

    RANK/RANKL/OPG pathway: genetic associations with stress fracture period prevalence in elite athletes

    Get PDF
    Context: The RANK/RANKL/OPG signalling pathway is important in the regulation of bone turnover, with single nucleotide polymorphisms (SNPs) in genes within this pathway associated with bone phenotypic adaptations. Objective: To determine whether four SNPs associated with genes in the RANK/RANKL/OPG signalling pathway were associated with stress fracture injury in elite athletes. Design, Participants, and Methods: Radiologically confirmed stress fracture history was reported in 518 elite athletes, forming the Stress Fracture Elite Athlete (SFEA) cohort. Data were analysed for the whole group, and were sub-stratified into male and cases of multiple stress fracture group. Genotypes were determined using proprietary fluorescence-based competitive allele-specific PCR assays. Results: SNPs rs3018362 (RANK) and rs1021188 (RANKL) were associated with stress fracture injury (p<0.05). 8.1% of stress fracture group and 2.8% of the non-stress fracture group were homozygote for the rare allele of rs1021188. Allele frequency, heterozygotes and homozygotes for the rare allele of rs3018362 were associated with stress fracture period prevalence (p<0.05). Analysis of the male only group showed 8.2% of rs1021188 rare allele homozygotes to have suffered a stress fracture while 2.5% of the non-stress fracture group were homozygous. In cases of multiple stress fractures, homozygotes for the rare allele of rs1021188, and individuals possessing at least one copy of the rare allele of rs4355801 (OPG) were shown to be associated with stress fracture injury (p<0.05). Conclusions: The data support an association between SNPs in the RANK/RANKL/OPG signalling pathway and the development of stress fracture injury. The association of rs3018362 (RANK) and rs1021188 (RANKL) with stress fracture injury susceptibility supports their role in the maintenance of bone health, and offers potential targets for therapeutic interventions

    Do trauma cue exposure and/or PTSD symptom severity intensify selective approach bias toward cannabis cues in regular cannabis users with trauma histories?

    Get PDF
    Trauma cue-elicited activation of automatic cannabis-related cognitive biases are theorized to contribute to comorbid posttraumatic stress disorder and cannabis use disorder. This phenomenon can be studied experimentally by combining the trauma cue reactivity paradigm (CRP) with cannabis-related cognitive processing tasks. In this study, we used a computerized cannabis approach-avoidance task (AAT) to assess automatic cannabis (vs. neutral) approach bias following personalized trauma (vs. neutral) CRP exposure. We hypothesized that selective cannabis (vs. neutral) approach biases on the AAT would be larger among participants with higher PTSD symptom severity, particularly following trauma (vs. neutral) cue exposure. We used a within-subjects experimental design with a continuous between-subjects moderator (PTSD symptom severity). Participants were exposed to both a trauma and neutral CRP in random order, completing a cannabis AAT (cannabis vs. neutral stimuli) following each cue exposure. Current cannabis users with histories of psychological trauma (n = 50; 34% male; mean age = 37.8 years) described their most traumatic lifetime event, and a similarly-detailed neutral event, according to an established interview protocol that served as the CRP. As hypothesized, an AAT stimulus type x PTSD symptom severity interaction emerged (p = .042) with approach bias greater to cannabis than neutral stimuli for participants with higher (p = .006), but not lower (p = .36), PTSD symptom severity. Contrasting expectations, the stimulus type x PTSD symptoms effect was not intensified by trauma cue exposure (p = .19). Selective cannabis approach bias may be chronically activated in cannabis users with higher PTSD symptom severity and may serve as an automatic cognitive mechanism to help explain PTSD-CUD co-morbidity.</p

    Impaired in vivo binding of MeCP2 to chromatin in the absence of its DNA methyl-binding domain

    Get PDF
    MeCP2 is a methyl-CpG-binding protein that is a main component of brain chromatin in vertebrates. In vitro studies have determined that in addition to its specific methyl-CpG-binding domain (MBD) MeCP2 also has several chromatin association domains. However, the specific interactions of MeCP2 with methylated or non-methylated chromatin regions and the structural characteristics of the resulting DNA associations in vivo remain poorly understood. We analysed the role of the MBD in MeCP2-chromatin associations in vivo using an MeCP2 mutant Rett syndrome mouse model (Mecp2(tm1.1Jae)) in which exon 3 deletion results in an N-terminal truncation of the protein, including most of the MBD. Our results show that in mutant mice, the truncated form of MeCP2 (delta MeCP2) is expressed in different regions of the brain and liver, albeit at 50% of its wild-type (wt) counterpart. In contrast to the punctate nuclear distribution characteristic of wt MeCP2, delta MeCP2 exhibits both diffuse nuclear localization and a substantial retention in the cytoplasm, suggesting a dysfunction of nuclear transport. In mutant brain tissue, neuronal nuclei are smaller, and delta MeCP2 chromatin is digested faster by nucleases, producing a characteristic nuclease-resistant dinucleosome. Although a fraction of delta MeCP2 is found associated with nucleosomes, its interaction with chromatin is transient and weak. Thus, our results unequivocally demonstrate that in vivo the MBD of MeCP2 together with its adjacent region in the N-terminal domain are critical for the proper interaction of the protein with chromatin, which cannot be replaced by any other of its protein domains
    • …
    corecore