485 research outputs found
Magnetorotational Instability in Liquid Metal Couette Flow
Despite the importance of the magnetorotational instability (MRI) as a
fundamental mechanism for angular momentum transport in magnetized accretion
disks, it has yet to be demonstrated in the laboratory. A liquid sodium
alpha-omega dynamo experiment at the New Mexico Institute of Mining and
Technology provides an ideal environment to study the MRI in a rotating metal
annulus (Couette flow). A local stability analysis is performed as a function
of shear, magnetic field strength, magnetic Reynolds number, and turbulent
Prandtl number. The later takes into account the minimum turbulence induced by
the formation of an Ekman layer against the rigidly rotating end walls of a
cylindrical vessel. Stability conditions are presented and unstable conditions
for the sodium experiment are compared with another proposed MRI experiment
with liquid gallium. Due to the relatively large magnetic Reynolds number
achievable in the sodium experiment, it should be possible to observe the
excitation of the MRI for a wide range of wavenumbers and further to observe
the transition to the turbulent state.Comment: 12 pages, 22 figures, 1 table. To appear in the Astrophysical Journa
Supernova Hosts for Gamma-Ray Burst Jets: Dynamical Constraints
I constrain a possible supernova origin for gamma-ray bursts by modeling the
dynamical interaction between a relativistic jet and a stellar envelope
surrounding it. The delay in observer's time introduced by the jet traversing
the envelope should not be long compared to the duration of gamma-ray emission;
also, the jet should not be swallowed by a spherical explosion it powers. The
only stellar progenitors that comfortably satisfy these constraints, if one
assumes that jets move ballistically within their host stars, are compact
carbon-oxygen or helium post-Wolf-Rayet stars (type Ic or Ib supernovae); type
II supernovae are ruled out. Notably, very massive stars do not appear capable
of producing the observed bursts at any redshift unless the stellar envelope is
stripped prior to collapse. The presence of a dense stellar wind places an
upper limit on the Lorentz factor of the jet in the internal shock model;
however, this constraint may be evaded if the wind is swept forward by a photon
precursor. Shock breakout and cocoon blowout are considered individually;
neither presents a likely source of precursors for cosmological GRBs.
These envelope constraints could conceivably be circumvented if jets are
laterally pressure-confined while traversing the outer stellar envelope. If so,
jets responsible for observed GRBs must either have been launched from a region
several hundred kilometers wide, or have mixed with envelope material as they
travel. A phase of pressure confinement and mixing would imprint correlations
among jets that may explain observed GRB variability-luminosity and
lag-luminosity correlations.Comment: 17 pages, MNRAS, accepted. Contains new analysis of pressure-confined
jets, of jets that experience oblique shocks or mix with their cocoons, and
of cocoons after breakou
Energetic particles in solar flares. Chapter 4 in the proceedings of the 2nd Skylab Workshop on Solar Flares
The recent direct observational evidence for the acceleration of particles in solar flares, i.e. radio emission, bremsstrahlung X-ray emission, gamma-ray line and continuum emission, as well as direct observations of energetic electrons and ions, are discussed and intercorrelated. At least two distinct phases of acceleration of solar particles exist that can be distinguished in terms of temporal behavior, type and energy of particles accelerated and the acceleration mechanism. Bulk energization seems the likely acceleration mechanism for the first phase while Fermi mechanism is a viable candidate for the second one
Post-Pancreatoduodenectomy Outcomes and Epidural Analgesia: A 5-Year Single Institution Experience
Introduction
Optimal pain control post-pancreatoduodenectomy is a challenge. Epidural analgesia (EDA) is increasingly utilized despite inherent risks and unclear effects on outcomes.
Methods
All pancreatoduodenectomies (PD) performed from 1/2013-12/2017 were included. Clinical parameters were obtained from retrospective review of a prospective clinical database, the ACS NSQIP prospective institutional database and medical record review. Chi-Square/Fisher’s Exact and Independent-Samples t-Tests were used for univariable analyses; multivariable regression (MVR) was performed.
Results
671 consecutive PD from a single institution were included (429 EDA, 242 non-EDA). On univariable analysis, EDA patients experienced significantly less wound disruption (0.2% vs. 2.1%), unplanned intubation (3.0% vs. 7.9%), pulmonary embolism (0.5% vs. 2.5%), mechanical-ventilation >48hrs (2.1% vs. 7.9%), septic shock (2.6% vs. 5.8%), and lower pain scores. On MVR accounting for baseline group differences (gender, hypertension, pre-operative transfusion, labs, approach, pancreatic duct size), EDA was associated with less superficial wound infections (OR 0.34; CI 0.14-0.83; P=0.017), unplanned intubations (OR 0.36; CI 0.14-0.88; P=0.024), mechanical ventilation >48 hrs (OR 0.22; CI 0.08-0.62; P=0.004), and septic shock (OR 0.39; CI 0.15-1.00; P=0.050). EDA improved pain scores post-PD days 1-3 (P<0.001). No differences were seen in cardiac or renal complications; pancreatic fistula (B+C) or delayed gastric emptying; 30/90-day mortality; length of stay, readmission, discharge destination, or unplanned reoperation.
Conclusion
Based on the largest single institution series published to date, our data support the use of EDA for optimization of pain control. More importantly, our data document that EDA significantly improved infectious and pulmonary complications
A Faraday Rotation Search for Magnetic Fields in Large Scale Structure
Faraday rotation of radio source polarization provides a measure of the
integrated magnetic field along the observational lines of sight. We compare a
new, large sample of Faraday rotation measures (RMs) of polarized extragalactic
sources with galaxy counts in Hercules and Perseus-Pisces, two nearby
superclusters. We find that the average of RMs in these two supercluster areas
are larger than in control areas in the same galactic latitude range. This is
the first RM detection of magnetic fields that pervade a supercluster volume,
in which case the fields are at least partially coherent over several
megaparsecs. Even the most conservative interpretation of our observations,
according to which Milky Way RM variations mimic the background supercluster
galaxy overdensities, puts constraints on the IGM magneto-ionic ``strength'' in
these two superclusters. We obtain an approximate typical upper limit on the
field strength of about 0.3 microGauss l/(500 kpc), when we combine our RM data
with fiducial estimates of electron density from the environments of giant
radio galaxies, and of the warm-hot intergalactic medium (WHIM).Comment: 8 pages, 3 figures, 1 table, to appear in the Astrophysical Journa
A Magnetic Alpha-Omega Dynamo in Active Galactic Nuclei Disks: I. The Hydrodynamics of Star-Disk Collisions and Keplerian Flow
A magnetic field dynamo in the inner regions of the accretion disk
surrounding the supermassive black holes in AGNs may be the mechanism for the
generation of magnetic fields in galaxies and in extragalactic space. We argue
that the two coherent motions produced by 1) the Keplerian motion and 2)
star-disk collisions, numerous in the inner region of AGN accretion disks, are
both basic to the formation of a robust, coherent dynamo and consequently the
generation of large scale magnetic fields. They are frequent enough to account
for an integrated dynamo gain, e^{10^{9}} at 100 gravitational radii of a
central black hole, many orders of magnitude greater than required to amplify
any seed field no matter how small. The existence of extra-galactic, coherent,
large scale magnetic fields whose energies greatly exceed all but massive black
hole energies is recognized. In paper II (Pariev, Colgate, and Finn 2006) we
argue that in order to produce a dynamo that can access the free energy of
black hole formation and produce all the magnetic flux in a coherent fashion
the existence of these two coherent motions in a conducting fluid is required.
The differential winding of Keplerian motion is obvious, but the disk structure
depends upon the model of "alpha", the transport coefficient of angular
momentum chosen. The counter rotation of driven plumes in a rotating frame is
less well known, but fortunately the magnetic effect is independent of the disk
model. Both motions are discussed in this paper, paper I. The description of
the two motions are preliminary to two theoretical derivations and one
numerical simulation of the alpha-omega dynamo in paper II. (Abridged)Comment: 34 pages, 1 figure, accepted by Ap
Revisiting the proposed planetary system orbiting the eclipsing polar HU Aquarii
It has recently been proposed, on the basis of eclipse-timing data, that the
eclipsing polar cataclysmic variable HU Aquarii is host to at least two giant
planets. However, that result has been called into question based upon the
dynamical stability of the proposed planets. In this work, we present a
detailed re-analysis of all eclipse timing data available for the HU Aquarii
system, making use of standard techniques used to fit orbits to radial-velocity
data. We find that the eclipse timings can be used to obtain a two-planet
solution that does not require the presence of additional bodies within the
system. We then perform a highly detailed dynamical analysis of the proposed
planetary system. We show that the improved orbital parameters we have derived
correspond to planets that are dynamically unstable on unfeasibly short
timescales (of order 10^4 years or less). Given these results, we discuss
briefly how the observed signal might in fact be the result of the intrinsic
properties of the eclipsing polar, rather than being evidence of dynamically
improbable planets. Taken in concert, our results highlight the need for
caution in interpreting such timing variations as being planetary in nature.Comment: Accepted for publication in MNRA
Optical and near-IR observations of SN 1998bw
SN 1998bw, especially after the discovery of GRB 030329/SN 2003dh, seems to
be the equivalent of the Rosetta stone for the SN/GRB connection. In this paper
I review optical and near IR observations that have been carried out for this
uncanny object, which has probably confirmed suspicions and ideas originally
formulated in the early seventies of last century.Comment: 9 pages, 7 figures. Invited review to the IAU Colloquium n. 192,
SUPERNOVAE: ten years of SN 1993J, Valencia (Spain
What Can the Accretion Induced Collapse of White Dwarfs Really Explain?
The accretion induced collapse (AIC) of a white dwarf into a neutron star has
been invoked to explain gamma-ray bursts, Type Ia supernovae, and a number of
problematic neutron star populations and specific binary systems. The ejecta
from this collapse has also been claimed as a source of r-process
nucleosynthesis. So far, most AIC studies have focussed on determining the
event rates from binary evolution models and less attention has been directed
toward understanding the collapse itself. However, the collapse of a white
dwarf into a neutron star is followed by the ejection of rare neutron-rich
isotopes. The observed abundance of these chemical elements may set a more
reliable limit on the rate at which AICs have taken place over the history of
the galaxy.
In this paper, we present a thorough study of the collapse of a massive white
dwarf in 1- and 2-dimensions and determine the amount and composition of the
ejected material. We discuss the importance of the input physics (equation of
state, neutrino transport, rotation) in determining these quantities. These
simulations affirm that AICs are too baryon rich to produce gamm-ray bursts and
do not eject enough nickel to explain Type Ia supernovae (with the possible
exception of a small subclass of extremely low-luminosity Type Ias). Although
nucleosynthesis constraints limit the number of neutron stars formed via AICs
to <0.1% of the total galactic neutron star population, AICs remain a viable
scenario for forming systems of neutron stars which are difficult to explain
with Type II core-collapse supernovae.Comment: Latex File, aaspp4 style, 18 pages total (5 figures), accepted by Ap
- …
