293 research outputs found

    Some brief notes on Decision no 3220/2017 of Piraeus’ Single-Member Court of First Instance

    Get PDF
    Decision no 3220/2017 of Piraeus’ Single-member Court of First Instance is of historical significance for two converging reasons. First, because it is the only known case since the ratification of the Revised European Social Charter by Greece in which a Greek court applies article 24 of the Charter on a dismissal case. The second reason is linked to the fact that, in its basic premise, the Court of Piraeus takes the view, for the first time in the history of the Greek labour jurisprudence, that, pursuant to article 24, in order for a dismissal to be lawful, it has to be grounded on a valid reason, which must be invoked before the court and then be proven by the employer. Provided that the Greek Supreme Court espouses this viewpoint, Piraeus’ ruling has the potential to radically alter the physiognomy of the Greek dismissal law by introducing an objective system of protection against arbitrary dismissals.L’arrĂȘt n ° 3220/2017 du Tribunal de PremiĂšre Instance de PirĂ©e est d’une importance marquante pour deux raisons convergentes. PremiĂšrement, parce qu’il est le premier cas de la jurisprudence hellĂ©nique, rendue aprĂšs la ratification par la GrĂšce de la Charte sociale europĂ©enne rĂ©visĂ©e, qui a appliquĂ© l'article 24 de la Charte dans une affaire de licenciement. Et, deuxiĂšmement, parce que dans cet arrĂȘt le Tribunal de PremiĂšre Instance de PirĂ©e a estimĂ© pour la premiĂšre fois en GrĂšce que, conformĂ©ment Ă  l'article 24 de la Charte, pour qu'un licenciement soit qualifiĂ© licite, il doit ĂȘtre fondĂ© sur une cause valable qui, une fois invoquĂ©e devant le tribunal, elle doit ĂȘtre prouvĂ©e par l'employeur. Si la Cour de Cassation hellĂ©nique adopte la solution prĂ©citĂ©e, l’arrĂȘt n° 3220/2017 du Tribunal de PremiĂšre Instance de PirĂ©e contribuera de façon dĂ©cisive Ă  la modification du droit grec des licenciements car il introduira dans l’ordre juridique hellĂ©nique un systĂšme objectif de protection contre tout licenciement arbitraire

    BIM enabled optimisation framework for environmentally responsible and structurally efficient design systems

    Get PDF
    The present research investigates the potential for reducing the environmental impacts of structural systems through a more efficient use of materials. The main objective of this research is to explore and to develop a holistic and integrated methodology that utilises Building Information Modelling's (BIM) capabilities combined with structural analysis and Life Cycle Assessment (LCA) as well as a two-staged structural optimisation solver that achieves efficient and environmentally responsible steel design solutions. The implemented workflow utilises Autodesk Revit-BIM, Tally-LCA and Autodesk Robot-Structural Analysis. RobOpt is the plug-in that has been established using the Application Programming Interface (API) of Robot and the .NET framework of C?, and it inherits several structural functionalities based on Robot Finite Element Method (FEM) engine. The proposed RobOpt application can be accessed via a graphic user interface (GUI) within the Robot software. The developed BIM-enabled optimisation methodology could be utilised as a design tool to inform early stage structural design solutions. A prototypical steel framed structural system under certain loads has been explored. The resulting bespoke I-beam sections from the custom genetic algorithm (GA) optimisation demonstrate that significant savings-up to 21%-can be achieved in all tested environmental indicators when compared to the standard UK catalogue of steel sections. Considering all, the proposed framework constitutes a useful and an intuitive workflow, which aims to quantify the environmental savings of structural systems by utilising, advanced computational analysis and common construction techniques

    The BAF and PRC2 Complex Subunits Dpf2 and Eed Antagonistically Converge on Tbx3 to Control ESC Differentiation.

    Get PDF
    BAF complexes are composed of different subunits with varying functional and developmental roles, although many subunits have not been examined in depth. Here we show that the Baf45 subunit Dpf2 maintains pluripotency and ESC differentiation potential. Dpf2 co-occupies enhancers with Oct4, Sox2, p300, and the BAF subunit Brg1, and deleting Dpf2 perturbs ESC self-renewal, induces repression of Tbx3, and impairs mesendodermal differentiation without dramatically altering Brg1 localization. Mesendodermal differentiation can be rescued by restoring Tbx3 expression, whose distal enhancer is positively regulated by Dpf2-dependent H3K27ac maintenance and recruitment of pluripotency TFs and Brg1. In contrast, the PRC2 subunit Eed binds an intragenic Tbx3 enhancer to oppose Dpf2-dependent Tbx3 expression and mesendodermal differentiation. The PRC2 subunit Ezh2 likewise opposes Dpf2-dependent differentiation through a distinct mechanism involving Nanog repression. Together, these findings delineate distinct mechanistic roles for specific BAF and PRC2 subunits during ESC differentiation

    Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years

    Get PDF
    The Tibetan Plateau exerts a major influence on Asian climate, but its long-term environmental history remains largely unknown. We present a detailed record of vegetation and climate changes over the past 1.74 million years in a lake sediment core from the Zoige Basin, eastern Tibetan Plateau. Results show three intervals with different orbital- and millennial-scale features superimposed on a stepwise long-term cooling trend. The interval of 1.74–1.54 million years ago is characterized by an insolation-dominated mode with strong ~20,000-year cyclicity and quasi-absent millennial-scale signal. The interval of 1.54–0.62 million years ago represents a transitional insolation-ice mode marked by ~20,000- and ~40,000-year cycles, with superimposed millennial-scale oscillations. The past 620,000 years are characterized by an ice-driven mode with 100,000-year cyclicity and less frequent millennial-scale variability. A pronounced transition occurred 620,000 years ago, as glacial cycles intensified. These new findings reveal how the interaction of low-latitude insolation and high-latitude ice-volume forcing shaped the evolution of the Tibetan Plateau climate.publishedVersio

    Microscopic Optical Projection Tomography In Vivo

    Get PDF
    We describe a versatile optical projection tomography system for rapid three-dimensional imaging of microscopic specimens in vivo. Our tomographic setup eliminates the in xy and z strongly asymmetric resolution, resulting from optical sectioning in conventional confocal microscopy. It allows for robust, high resolution fluorescence as well as absorption imaging of live transparent invertebrate animals such as C. elegans. This system offers considerable advantages over currently available methods when imaging dynamic developmental processes and animal ageing; it permits monitoring of spatio-temporal gene expression and anatomical alterations with single-cell resolution, it utilizes both fluorescence and absorption as a source of contrast, and is easily adaptable for a range of small model organisms

    A microfluidics-based method for measuring neuronal activity in Drosophila chemosensory neurons

    Get PDF
    Monitoring neuronal responses to defined sensory stimuli is a powerful and widely used approach for understanding sensory coding in the nervous system. However, providing precise, stereotypic and reproducible cues while concomitantly recording neuronal activity remains technically challenging. Here we describe the fabrication and use of a microfluidics system that allows precise temporally restricted stimulation of Drosophila chemosensory neurons with an array of different chemical cues. The system can easily be combined with genetically encoded calcium sensors, and it can measure neuronal activity at single-cell resolution in larval sense organs and in the proboscis or leg of the adult fly. We describe the design of the master mold, the production of the microfluidic chip and live imaging using the calcium sensor GCaMP, expressed in distinct types of Drosophila chemosensory neurons. Fabrication of the master mold and microfluidic chips requires basic skills in photolithography and takes ~2 weeks; the same devices can be used repeatedly over several months. Flies can be prepared for measurements in minutes and imaged for up to 1 h

    Behavioral Inhibition as a Risk Factor for the Development of Childhood Anxiety Disorders: A Longitudinal Study

    Get PDF
    This longitudinal study examined the additive and interactive effects of behavioral inhibition and a wide range of other vulnerability factors in the development of anxiety problems in youths. A sample of 261 children, aged 5 to 8 years, 124 behaviorally inhibited and 137 control children, were followed during a 3-year period. Assessments took place on three occasions to measure children’s level of behavioral inhibition, anxiety disorder symptoms, other psychopathological symptoms, and a number of other vulnerability factors such as insecure attachment, negative parenting styles, adverse life events, and parental anxiety. Results obtained with Structural Equation Modeling indicated that behavioral inhibition primarily acted as a specific risk factor for the development of social anxiety symptoms. Furthermore, the longitudinal model showed additive as well as interactive effects for various vulnerability factors on the development of anxiety symptoms. That is, main effects of anxious rearing and parental trait anxiety were found, whereas behavioral inhibition and attachment had an interactive effect on anxiety symptomatology. Moreover, behavioral inhibition itself was also influenced by some of the vulnerability factors. These results provide support for dynamic, multifactorial models for the etiology of child anxiety problems

    The GOES-R Geostationary Lightning Mapper (GLM) and the Global Observing System for Total Lightning

    Get PDF
    for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning continuously day and night with near-uniform spatial resolution of 8 km with a product latency of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. The GLM will help address the National Weather Service requirement for total lightning observations globally to support warning decision-making and forecast services. Science and application development along with pre-operational product demonstrations and evaluations at NWS national centers, forecast offices, and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in 2016. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings

    The brain is a DJ using neuropeptides as sensory crossfaders

    Get PDF
    Sensory loss induces cross-modal plasticity, often resulting in altered performance in remaining sensory modalities. Whereas much is known about the macroscopic mechanisms underlying cross-modal plasticity, only scant information exists about its cellular and molecular underpinnings. We found that Caenorhabditis elegans nematodes deprived of a sense of body touch exhibit various changes in behavior, associated with other unimpaired senses. We focused on one such behavioral alteration, enhanced odor sensation, and sought to reveal the neuronal and molecular mechanisms that translate mechanosensory loss into improved olfactory acuity. To this end, we analyzed in mechanosensory mutants food-dependent locomotion patterns that are associated with olfactory responses and found changes that are consistent with enhanced olfaction. The altered locomotion could be reversed in adults by optogenetic stimulation of the touch receptor (mechanosensory) neurons. Furthermore, we revealed that the enhanced odor response is related to a strengthening of inhibitory AWC→AIY synaptic transmission in the olfactory circuit. Consistently, inserting in this circuit an engineered electrical synapse that diminishes AWC inhibition of AIY counteracted the locomotion changes in touch-deficient mutants. We found that this cross-modal signaling between the mechanosensory and olfactory circuits is mediated by neuropeptides, one of which we identified as FLP-20. Our results indicate that under normal function, ongoing touch receptor neuron activation evokes FLP-20 release, suppressing synaptic communication and thus dampening odor sensation. In contrast, in the absence of mechanosensory input, FLP-20 signaling is reduced, synaptic suppression is released, and this enables enhanced olfactory acuity; these changes are long lasting and do not represent ongoing modulation, as revealed by optogenetic experiments. Our work adds to a growing literature on the roles of neuropeptides in cross-modal signaling, by showing how activity-dependent neuropeptide signaling leads to specific cross-modal plastic changes in neural circuit connectivity, enhancing sensory performance.status: publishe
    • 

    corecore