25 research outputs found
ST3Gal.I sialyltransferase relevance in bladder cancer tissues and cell lines
<p>Abstract</p> <p>Background</p> <p>The T antigen is a tumor-associated structure whose sialylated form (the sialyl-T antigen) involves the altered expression of sialyltransferases and has been related with worse prognosis. Since little or no information is available on this subject, we investigated the regulation of the sialyltransferases, able to sialylate the T antigen, in bladder cancer progression.</p> <p>Methods</p> <p>Matched samples of urothelium and tumor tissue, and four bladder cancer cell lines were screened for: <it>ST3Gal.I</it>, <it>ST3Gal.II </it>and <it>ST3Gal.IV </it>mRNA level by real-time PCR. Sialyl-T antigen was detected by dot blot and flow cytometry using peanut lectin. Sialyltransferase activity was measured against the T antigen in the cell lines.</p> <p>Results</p> <p>In nonmuscle-invasive bladder cancers, <it>ST3Gal.I </it>mRNA levels were significantly higher than corresponding urothelium (p < 0.001) and this increase was twice more pronounced in cancers with tendency for recurrence. In muscle-invasive cancers and matching urothelium, <it>ST3Gal.I </it>mRNA levels were as elevated as nonmuscle-invasive cancers. Both non-malignant bladder tumors and corresponding urothelium showed <it>ST3Gal.I </it>mRNA levels lower than all the other specimen groups. A good correlation was observed in bladder cancer cell lines between the <it>ST3Gal.I </it>mRNA level, the ST activity (r = 0.99; p = 0.001) and sialyl-T antigen expression, demonstrating that sialylation of T antigen is attributable to ST3Gal.I. The expression of sialyl-T antigens was found in patients' bladder tumors and urothelium, although without a marked relationship with mRNA level. The two <it>ST3Gal.I </it>transcript variants were also equally expressed, independently of cell phenotype or malignancy.</p> <p>Conclusion</p> <p>ST3Gal.I plays the major role in the sialylation of the T antigen in bladder cancer. The overexpression of <it>ST3Gal.I </it>seems to be part of the initial oncogenic transformation of bladder and can be considered when predicting cancer progression and recurrence.</p
Inhibition of protein synthesis in insect cells by baculovirus-expressed heme-regulated eIF-2 alpha kinase.
Extracellular and intracellular esterase processing of SCFA–hexosamine analogs: Implications for metabolic glycoengineering and drug delivery
Dendritic cells process antigens encapsulated in a biodegradable polymer, poly(D,L-lactide-co-glycolide), via an alternate class I MHC processing pathway
Auranofin, an immunosuppressive drug, inhibits MHC class I and MHC class II pathways of antigen presentation in dendritic cells
Carbohydrate-Monophosphoryl Lipid A Conjugates Are Fully Synthetic Self-Adjuvanting Cancer Vaccines Eliciting Robust Immune Responses in the Mouse
Metabolic glycoengineering: Sialic acid and beyond
This report provides a perspective on metabolic glycoengineering methodology developed over the past two decades that allows natural sialic acids to be replaced with chemical variants in living cells and animals. Examples are given demonstrating how this technology provides the glycoscientist with chemical tools that are beginning to reproduce Mother Nature's control over complex biological systems – such as the human brain – through subtle modifications in sialic acid chemistry. Several metabolic substrates (e.g., ManNAc, Neu5Ac, and CMP-Neu5Ac analogs) can be used to feed flux into the sialic acid biosynthetic pathway resulting in numerous – and sometime quite unexpected – biological repercussions upon nonnatural sialoside display in cellular glycans. Once on the cell surface, ketone-, azide-, thiol-, or alkyne-modified glycans can be transformed with numerous ligands via bioorthogonal chemoselective ligation reactions, greatly increasing the versatility and potential application of this technology. Recently, sialic acid glycoengineering methodology has been extended to other pathways with analog incorporation now possible in surface-displayed GalNAc and fucose residues as well as nucleocytoplasmic O-GlcNAc-modified proteins. Finally, recent efforts to increase the “druggability” of sugar analogs used in metabolic glycoengineering, which have resulted in unanticipated “scaffold-dependent” activities, are summarized
