113 research outputs found
Effect of iodine incorporation on characteristic properties of cadmium telluride deposited in aqueous solution
The electrodeposition of polycrystalline I-doped CdTe was successfully performed from aqueous solutions containing cadmium nitrate (Cd(NO3)2 and tellurium oxide (TeO2). The effects of different I-doping concentrations in the electrolytic bath on the deposited CdTe layers deposited were evaluated structurally, optically, morphologically and electronically using X-ray diffraction (XRD), ultraviolet-visible spectrophotometry, scanning electron microscopy, photoelectrochemical cell measurement and direct-current (DC) conductivity test respectively. The XRD show reduction in the (111) cubic CdTe peak intensity and the calculated crystallite size of the CdTe:I layers above 5 ppm I-doping. At I-doping of 1000 ppm of the CdTe-bath and above, the deposition of only crystalline Te due to the formation of Cd-I complexes debarring the deposition of Cd and co-deposition of CdTe in aqueous solution was observed. Morphologically, reductions in grain size were observed above 5 ppm I-doping with high pinhole density and the formation of cracks within the CdTe:I layers. For the as-deposited CdTe:I layers, conduction type remained n-type across all the explored I-doping concentration of 200 ppm. For the CdCl2 and Ga2(SO4)2+CdCl2 treated CdTe:I layers, the transition from n- to p-type conductivity was observed for the CdTe:I baths doped with 20 ppm and above due to the reduced cadmium deposition on the substrate. The highest conductivity was observed at 5 ppm I-doping of the CdTe-bath. Observations made on the CdTe:I in aqueous solution differs from the non-aqueous solvent documented in the literature. These results are reported systematically in this communication
Effect of gallium doping on the characteristic properties of polycrystalline cadmium telluride thin film
Ga-doped CdTe polycrystalline thin films were successfully electrodeposited on glass/fluorine doped tin oxide (FTO) substrates from aqueous electrolytes containing cadmium nitrate (Cd(NO3)2⸱4H2O) and tellurium oxide (TeO2). The effects of different Ga-doping concentrations on the CdTe:Ga coupled with different post-growth treatments were studied by analysing the structural, optical, morphological and electronic properties of the deposited layers using X-ray diffraction (XRD), ultraviolet-visible spectrophotometry, scanning electron microscopy, photoelectrochemical cell measurement and direct-current conductivity test respectively. XRD results show diminishing (111)C CdTe peak above 20 ppm Ga-doping and appearance of (301)M GaTe diffraction above 50 ppm Ga-doping indicating the formation of two phases; CdTe and GaTe . Although, reductions in the absorption edge slopes were observed above 20 ppm Ga-doping for the as-deposited CdTe:Ga layer, no obvious influence on the energy gap of CdTe films with Ga-doping were detected. Morphologically, reductions in grain size were observed at 50 ppm Ga-doping and above with high pinhole density within the layer. For the as-deposited CdTe:Ga layers, conduction type change from n- to p- were observed at 50 ppm, while the n-type conductivity were retained after post-growth treatment. Highest conductivity was observed at 20 ppm Ga-doping of CdTe. These results are systematically reported in this pape
Assessment of Carbon Storage and Biomass on Minelands Reclaimed to Grassland Environments Using Landsat Spectral Indices
This study investigated carbon (C) storage and biomass in grasslands of West Virginia reclaimed surface minesites. Mine-related disturbance and subsequent reclamation may be an important component of C cycling. Biomass and C storage generally increased for the first five years after reclamation, but then declined, suggesting a nonlinear pattern to vegetation recovery. Three 2007 Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper Plus images were used to assess the potential to predict biomass from raw red and near infrared radiance, the tasseled cap transformation (TC), and four vegetation indices [normalized difference vegetation index, enhanced vegetation index (EVI), triangular vegetation index, and the soil adjusted vegetation index]. TC greenness and EVI were most strongly correlated with biomass and illustrate a modest potential for monitoring vegetation recovery in reclaimed minelands. Additionally, a number of regression models that included age since reclamation and spectral indices were statistically significant suggesting a temporal recovery pattern amongst minesites in this study
Lack of context modulation in human single neuron responses in the medial temporal lobe
In subjects implanted with intracranial electrodes, we use two different stories involving the same person (or place) to evaluate whether and to what extent context modulates human single-neuron responses. Nearly all neurons (97% during encoding and 100% during recall) initially responding to a person/place do not modulate their response with context. Likewise, nearly none (<1%) of the initially non-responsive neurons show conjunctive coding, responding to particular persons/places in a particular context during the tasks. In line with these findings, taking all neurons together it is possible to decode the person/place being depicted in each story, but not the particular story. Moreover, the neurons show consistent results across encoding and recall of the stories and during passive viewing of pictures. These results suggest a context invariant, non-conjunctive coding of memories at the single-neuron level in the human hippocampus and amygdala, in contrast to what has been described in other species.</p
Pathotype variation of barley powdery mildew in Western Australia
Barley powdery mildew caused by the fungus Blumeria graminis f. sp. hordei (Bgh) has emerged as the most damaging disease of barley in Western Australia (WA). Many of the available cultivars display high levels of disease in the field when climatic conditions are conducive. As a result, fungicides have become the main method of disease control in the last 10 years. Different types and sources of genetic disease resistance are available but to optimise their deployment it is necessary to evaluate the spectrum of pathotypes present in the pathogen population. Sixty isolates of Bgh were collected in the 2009 season from 9 locations, single spored and characterised by infection on reference barley lines and cultivars. Eighteen unique pathotypes were resolved. Virulence against many of the R-genes in the reference lines was present in at least one pathotype. Isolates were virulent against 16 out of a total of 23 resistance gene combinations. Undefeated resistance genes included the major R-genes Mla-6, Mla-9, Ml-ra and the combinations of Mla-1 plus Mla-A12 and Mla-6 plus Mla-14 and Mla-13 plus Ml-Ru3 together with the recessive resistance gene mlo-5. There was significant pathotype spatial differentiation suggesting limited gene flow between different regions with WA or localised selection pressures and proliferation. On the basis of the results we recommend a number of strategies to manage powdery mildew disease levels within WA
Investigation of phase transformations and corrosion resistance in Co/CoCo2O4 nanowires and their potential use as a basis for lithium-ion batteries
The paper is devoted to the study of the effect of thermal annealing on the change in the structural properties and phase composition of metal Co nanostructures, as well as the prospects of their use as anode materials for lithium-ion batteries. During the study, a four-stage phase transition in the structure of nanowires consisting of successive transformations of the structure (Со-FCC/Co-HCP) → (Со-FCС) → (Со-FCC/СоСо2О4) → (СоСо2О4), accompanied by uniform oxidation of the structure of nanowires with an increase in temperature above 400 °C. In this case, an increase in temperature to 700 °C leads to a partial destruction of the oxide layer and surface degradation of nanostructures. During life tests, it was found that the lifetime for oxide nanostructures exceeds 500 charge/discharge cycles, for the initial nanostructures and annealed at a temperature of 300 °С, the lifetimes are 297 and 411 cycles, respectively. The prospects of using Co/CoCo2O4 nanowires as the basis for lithium-ion batteries is shown. © 2019, The Author(s)
Structure and magnetic properties of Co nanowires electrodeposited into the pores of anodic alumina membranes
Mutations in the Neuronal Vesicular SNARE VAMP2 Affect Synaptic Membrane Fusion and Impair Human Neurodevelopment
VAMP2 encodes the vesicular SNARE protein VAMP2 (also called synaptobrevin-2). Together with its partners syntaxin-1A and synaptosomal-associated protein 25 (SNAP25), VAMP2 mediates fusion of synaptic vesicles to release neurotransmitters. VAMP2 is essential for vesicular exocytosis and activity-dependent neurotransmitter release. Here, we report five heterozygous de novo mutations in VAMP2 in unrelated individuals presenting with a neurodevelopmental disorder characterized by axial hypotonia (which had been present since birth), intellectual disability, and autistic features. In total, we identified two single-amino-acid deletions and three non-synonymous variants affecting conserved residues within the C terminus of the VAMP2 SNARE motif. Affected individuals carrying de novo non-synonymous variants involving the C-terminal region presented a more severe phenotype with additional neurological features, including central visual impairment, hyperkinetic movement disorder, and epilepsy or electroencephalography abnormalities. Reconstituted fusion involving a lipid-mixing assay indicated impairment in vesicle fusion as one of the possible associated disease mechanisms. The genetic synaptopathy caused by VAMP2 de novo mutations highlights the key roles of this gene in human brain development and function
Mutations in the Neuronal Vesicular SNARE VAMP2 Affect Synaptic Membrane Fusion and Impair Human Neurodevelopment
VAMP2 encodes the vesicular SNARE protein VAMP2 (also called synaptobrevin-2). Together with its partners syntaxin-1A and synaptosomal-associated protein 25 (SNAP25), VAMP2 mediates fusion of synaptic vesicles to release neurotransmitters. VAMP2 is essential for vesicular exocytosis and activity-dependent neurotransmitter release. Here, we report five heterozygous de novo mutations in VAMP2 in unrelated individuals presenting with a neurodevelopmental disorder characterized by axial hypotonia (which had been present since birth), intellectual disability, and autistic features. In total, we identified two single-amino-acid deletions and three non-synonymous variants affecting conserved residues within the C terminus of the VAMP2 SNARE motif. Affected individuals carrying de novo non-synonymous variants involving the C-terminal region presented a more severe phenotype with additional neurological features, including central visual impairment, hyperkinetic movement disorder, and epilepsy or electroencephalography abnormalities. Reconstituted fusion involving a lipid-mixing assay indicated impairment in vesicle fusion as one of the possible associated disease mechanisms. The genetic synaptopathy caused by VAMP2 de novo mutations highlights the key roles of this gene in human brain development and function
Stable transformation of erysiphe graminis an obligate biotrophic pathogen of barley.
Barley powdery mildew, Erysiphe graminis f.sp. hordei, is an obligate biotrophic pathogen and as such cannot complete its life cycle without a living host. The inability to transform this fungus and manipulate its genome has constrained research towards understanding its life cycle and pathogenicity. Here we describe an in planta transformation system based on delivery of DNA using a gold-particle gun and selection using benomyl or bialaphos. Using this method, we consistently obtained stable transformants with efficiencies comparable to other filamentous fungi. Stable expression of the beta-glucuronidase in E. graminis was demonstrated by co-transforming the uidA gene with the selectable markers
- …
