4,090 research outputs found

    Terragni sono io!

    Get PDF
    Testo ufficiale letto prima della cerimonia della consegna del Diploma Honoris Causa all'architetto americano Peter Eisenman

    Photochemical Organocatalytic Regio- and Enantioselective Conjugate Addition of Allyl Groups to Enals

    Get PDF
    We report the first catalytic enantioselective conjugate addition of allyl groups to α,β-unsaturated aldehydes. The chemistry exploits the visible-light-excitation of chiral iminium ions to activate allyl silanes towards the formation of allylic radicals, which are then intercepted stereoselectively. The underlying radical mechanism of this process overcomes the poor regio- and chemoselectivity that traditionally affects the conjugate allylation of enals proceeding via polar pathways. We also demonstrate how this organocatalytic strategy could selectively install a valuable prenyl fragment at the β-carbon of enals

    Composite material identification as micropolar continua via an optimization approach

    Get PDF
    A strategy based on material homogenization and heuristic optimization for the structural identification of composite materials is proposed. The objective is the identification of the constitutive properties of a micropolar continuum model employed to describe the mechanical behaviour of a composite material made of rigid blocks and thin elastic interfaces. The micropolar theory (Cosserat) has been proved to be capable of properly accounting for the particles arrangements as well as their size and orientation. The constitutive parameters of the composite materials, characterized by different textures and dimensions of the rigid blocks, are identified through a homogenization procedure. Thus, the identification is repeated exploiting the static or modal response of the composite materials and using the Differential Evolution algorithm. The benchmark structures assumed as target are represented by discrete models implemented in ABAQUS where the blocks and the elastic interfaces are modelled by rigid bodies and elastic interfaces, respectively. The obtained results show that proposed strategies provide accurate results paving the way to the experimental validation and in field applications

    Element-resolved x-ray ferrimagnetic and ferromagnetic resonance spectroscopy

    Get PDF
    We report on the measurement of element-specific magnetic resonance spectra at gigahertz frequencies using x-ray magnetic circular dichroism (XMCD). We investigate the ferrimagnetic precession of Gd and Fe ions in Gd-substituted Yttrium Iron Garnet, showing that the resonant field and linewidth of Gd precisely coincide with Fe up to the nonlinear regime of parametric excitations. The opposite sign of the Gd x-ray magnetic resonance signal with respect to Fe is consistent with dynamic antiferromagnetic alignment of the two ionic species. Further, we investigate a bilayer metal film, Ni80_{80}Fe20_{20}(5 nm)/Ni(50 nm), where the coupled resonance modes of Ni and Ni80_{80}Fe20_{20} are separately resolved, revealing shifts in the resonance fields of individual layers but no mutual driving effects. Energy-dependent dynamic XMCD measurements are introduced, combining x-ray absorption and magnetic resonance spectroscopies.Comment: 16 pages, 8 figure

    Nets, relations and linking diagrams

    Full text link
    In recent work, the author and others have studied compositional algebras of Petri nets. Here we consider mathematical aspects of the pure linking algebras that underly them. We characterise composition of nets without places as the composition of spans over appropriate categories of relations, and study the underlying algebraic structures.Comment: 15 pages, Proceedings of 5th Conference on Algebra and Coalgebra in Computer Science (CALCO), Warsaw, Poland, 3-6 September 201

    Calculating Colimits Compositionally

    Get PDF
    We show how finite limits and colimits can be calculated compositionally using the algebras of spans and cospans, and give as an application a proof of the Kleene Theorem on regular languages

    Environment and classical channels in categorical quantum mechanics

    Full text link
    We present a both simple and comprehensive graphical calculus for quantum computing. In particular, we axiomatize the notion of an environment, which together with the earlier introduced axiomatic notion of classical structure enables us to define classical channels, quantum measurements and classical control. If we moreover adjoin the earlier introduced axiomatic notion of complementarity, we obtain sufficient structural power for constructive representation and correctness derivation of typical quantum informatic protocols.Comment: 26 pages, many pics; this third version has substantially more explanations than previous ones; Journal reference is of short 14 page version; Proceedings of the 19th EACSL Annual Conference on Computer Science Logic (CSL), Lecture Notes in Computer Science 6247, Springer-Verlag (2010

    Incubation of solid state C<sub>60</sub> fullerene under UV irradiation mimicking environmentally relevant conditions

    Get PDF
    Carbon-based nanomaterials, such as C60 fullerenes, are expected to accumulate in soil due to direct release and deposition from the atmosphere. However, little is known about the environmental fate of these nanoparticles which may be susceptible to photochemical and microbial degradation. In the present work, C60 was incubated for a period of 28 days and irradiated with UVA light. Three experiments were carried out where the fullerenes were either spiked onto a glass surface or added to quartz sand or sandy soil samples. At specific time intervals the samples were extracted and analysed by liquid chromatography coupled to UV or high resolution mass spectrometric (HRMS) detection. The fullerenes were degraded in all the treatments and the decay followed a pseudo-first-order rate law. In absence of a solid matrix, the half-life (t1⁄2) of the C60 was 13.1 days, with an overall degradation of 45.1% that was accompanied by the formation of functionalized C60-like structures. Furthermore, mass spectrometric analysis highlighted the presence of a large number of transformation products that were not directly related to the irradiation and presented opened cage and oxidized structures. When C60 was spiked into solid matrices the degradation occurred at a faster rate (t1⁄2 of 4.5 and 0.8 days for quartz sand and sandy soil, respectively). Minor but consistent losses were found in the non-irradiated samples, presumably due to biotic or chemical processes occurring in these samples. The results of this study suggest that light-mediated transformation of the fullerenes will occur in the environment

    A method for the determination of fullerenes in soil and sediment matrices using ultra-high performance liquid chromatography coupled with heated electrospray quadrupole time of flight mass spectrometry

    Get PDF
    The increasing production of fullerenes likely means a release of these chemicals in the environment. Since soils and sediments are expected to act as a sink, analytical tools are needed to assess the presence of fullerenes in these matrices. In the present work, a method was developed for the determination of fullerenes at environmental relevant levels employing Ultra High Performance Liquid Chromatograph coupled with High Resolution Mass Spectrometry (UHPLC-HRMS). Chromatographic separation was achieved with a core–shell biphenyl stationary phase that provided fast analysis with complete baseline separation. Ion Booster Electro Spray Ionization (IB-ESI) resulted in higher ionization efficiency and was much less susceptible to adduct formation in comparison with standard ESI, whereas Quadrupole Time of Flight (QTOF) MS granted high resolution mass spectra used for accurate identification. The Instrumental method limits of detection (ILoD) and quantification (ILoQ) were 6 and 20 fg, respectively, for C60 and 12 and 39 fg, respectively, for C70. Matrix effects related to co-extractants were systematically investigated in soil and sediments extracts through standard addition method (SAM) and monitoring the signal response during the chromatographic run of these samples. Consequently, minor chromatographic modifications were necessary for the analysis of matrices with high organic carbon content. The method limit of detection (MLoD)ranged from 84 pg/kg to 335 pg/kg, whereas limit of quantification (MLoQ) ranged from 279 pg/kg to 1.1 ng/kg. Furthermore, the method was successfully applied for the analysis of functionalized fullerenes (i.e. methanofullerenes). To the best of our knowledge, this is the first analytical method for the analysis of fullerenes in soils and sediments that employ core–shell biphenyl stationary phase as well as IB-ESI-QTOF MS hyphenated with UHPLC

    Video thoracoscopic surgery used to manage tuberculosis in thoracic surgery

    Get PDF
    Background: The aim of this study was to evaluate the indications and results of video-assisted thoracic surgery (VATS) for the management of tuberculosis in 10 patients with unusual clinical and radiologic presentation for the disease. Methods: From March 2000 to March 2002, 96 diagnostic VATS operations for unclear thoracic lesions were performed at the authors' institution. Their final diagnosis for 10 (10.4%) of these patients was tuberculosis. The suspected preoperative diagnoses were pancoast tumour (n = 1), pericardial effusion (n = 1), pleural mesothelioma (n = 1), pleural empyema (n = 2), mediastinal lymphoma (n = l), and lung cancer (n = 4). Results: For all the patients, the diagnosis of tuberculosis was achieved by VATS. The duration of drainage was 2.5 days. There have been neither morbidity nor mortality since surgery. The hospital stay was 3 to 5 days. Conclusion: Thoracoscopy is a safe and effective procedure for the management of tuberculosis. Tuberculosis should be kept in mind during the differential diagnosis of unknown thoracic lesions, and also for patients who live in economically well developed countries and are not immune compromise
    corecore