
Calculating Colimits Compositionally

Robert Rosebrugh1, Nicoletta Sabadini2, and Robert F.C. Walters2,�

1 Department of Mathematics and Statistics
Mt. Allison University, Sackville,

New Brunswick, Canada
2 Dipartimento di Scienze delle Cultura, Politiche e dell’Informazione,

Università dell’Insubria, Italy

Abstract. We show how finite limits and colimits can be calculated
compositionally using the algebras of spans and cospans, and give as an
application a proof of the Kleene Theorem on regular languages.

1 Introduction

In Computer Science:
The state spaces of systems are often described by finite limits or colimits in a
category E parametrized by a graph G which describes the underlying geometry
of the system. It is desirable that there is also an algebraic description, so that
the limit or colimit is described by an expression, rather than geometrically.

This goes back to the beginnings of computer science, where (i) a program
may be described either by a flow chart (goto’s), or program text (while) (Böhm-
Jacopini), (ii) a language may be specified by an automaton or an expression
(Kleene). And of course it is present in innumerable areas of computer science
(Petri nets versus process algebras, wysiwig versus markup, graph versus term
rewriting, etc.) and mathematics.

In Category Theory:
Finite limits and colimits are parametrized by graphs; that is, geometrically.
We show that they can also be described by expressions in an algebra. As an
application we prove Kleene’s theorem.

Perhaps the first proposal for a strict relation between graphic and alge-
braic/categorical descriptions arose in the work of R. Penrose [20] in his graphical
description of the tensor calculus in 1971. C.C. Elgot [6] began the algebraiciza-
tion of flowcharts and circuits introducing a categorical algebra which contained
three basic operations; in circuit terminology - series and parallel composition,
and feedback. In subsequent work this algebra has been intensively developed
by S.L. Bloom and Z. Esik, with the state of progress being recorded in their
monograph [2].

� The authors gratefully acknowledge financial support from the Universitá
dell’Insubria, the Italian Government PRIN project ART (Analisi di sistemi di
Riduzione mediante sistemi di Transizione), and the Canadian NSERC.

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 581–592, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

582 R. Rosebrugh, N. Sabadini, and R.F.C. Walters

In a parallel development G.M. Kelly and M.L. Laplaza [16] gave a graphical
account of compact closed monoidal categories. Following [25], A. Joyal and R.H.
Street [9] discovered the notion of braided monoidal category, a major impulse
towards the study of geometry and higher dimensional categories. Among the
many categorical developments was the discovery in [4] of the Frobenius equa-
tion and the recognition by Joyal of its importance in 2-dimensional cobordism
theory [17].

Ugo Montanari and his collaborators have played a fundamental role in re-
lated developments in computer science, beginning with the fundamental paper
[19] relating Petri nets and monoidal categories. Gadducci and Heckel [7],[8]
discovered that a category of cospans of graphs is a free symmetric monoidal
category with appropriate structure and axioms (one being the Frobenius ax-
iom (see also [22])), and gave an algebraic formulation of double-pushout graph
rewriting.

In the last ten years there has been a flowering of applications of monoidal cat-
egories in geometry, physics and computer science. We cite just three directions
in computer science [10], [3], [1].

The algebra in which finite limits and colimits in E may be expressed compo-
sitionally is an appropriate structure on spans and cospans in the category. This
fact is a partial explanation for the algebra of spans and cospans introduced in
[12],[14] and developed in various papers, such as [13],[15],[21].

This note is an expanded version of a lecture [23] to Category Theory 2007,
Carvoeiro, Portugal, 18th June 2007. A more detailed version with full proofs is
in preparation [24].

2 What Algebra?

Assume now E is a category with finite colimits. What is the algebra in which
finite colimits in E can be described by expressions?
It is cospan(E), considered as a symmetric monoidal category in which each
object has a commutative separable algebra structure. We call a category with
such a structure wscc (well-supported compact closed [26]). To be precise:

Definition 1. A commutative separable algebra [4] in a symmetric monoidal
category is an object A equipped with four arrows

! : I −→ A, ∇ : A ⊗ A −→ A, ¡ : A −→ I, Δ : A −→ A ⊗ A

such that (A, �, !) forms a commutative monoid, (A, �, ¡) forms a cocommutative
comonoid, and the following three axioms hold

(1A ⊗ ∇)(Δ ⊗ 1A) = Δ∇ = (∇ ⊗ 1A)(1A ⊗ Δ),

∇Δ = 1A.

We can draw a picture of the last three extra axioms, namely:

Calculating Colimits Compositionally 583

==

=

The wscc structure induces a self-dual compact closed structure on the cate-
gory, and we denote the units and counits of this structure as

ηA : I → A ⊗ A (= Δ · !), εA : A ⊗ A → I (= ¡ · ∇).

For some background to these axioms see also [17].

2.1 The wscc Structure on Span and Cospan Categories

We will describe the wscc structure on cospan(E) for E a finitely cocomplete
category – the dual structure on span(E) will then be clear.

An object of cospan(E) is an object of E; an arrow of cospan(E) from A to
B is an isomorphism class of cospans from A to B; that is, of pairs of arrows

α1, α2 : A → R ← B.

We will use the notation α1, α2; A ←→ B to distinguish cospans from arrows
in E. However given any arrow f : A → B there are special cospans denoted
f = f, 1B : A ←→ B and fo = 1B, f : B ←→ A. Composition of cospans is
by pushout. Now to describe the wscc structure of cospan(E). The monoidal
structure is sum. The special arrows

! : I −→ A, ∇ : A ⊗ A −→ A, ¡ : A −→ I, Δ : A −→ A ⊗ A

are (using ∇ both for the codiagonal in E and the structure in cospan(E), and
similarly overloading the symbol !)

! = ! : 0 ←→ A, ∇ = ∇ : A+A ←→ A, ¡ =!o : A ←→ 0, Δ = ∇o : A ←→ A+A.

2.2 Cspn(Graph/|E|)

Let Graph be the category of finite graphs, let |E| be the underlying graph (possi-
bly infinite) of E. Consider Graph/|E|, the category with objects diagrams in E,
and morphisms compatible graph morphisms. Then Cspn(Graph/|E|) is the full
subcategory of cospan(Graph/|E|) whose objects are discrete diagrams in E.

Notice that colimits in this category are calculated as in Graph, and are un-
related to colimits in E.

584 R. Rosebrugh, N. Sabadini, and R.F.C. Walters

We will denote diagrams using set-theoretical notation; for example

{A
f ��

g
�� B}

denotes the diagram with two parallel arrows.
It will be useful to introduce a way of picturing arrows in Cspn(Graph/|E|)

(engineering notation). Represent the objects in the centre graph of the cospan
as points, and arrows in the centre as components with one input (to the left)
and one output (to the right) joined to those points which are the domain and
codomain of the arrow. Represent the graph morphisms of the cospan as input
and output wires of the whole picture.

Example 1. Consider the following cospan of diagrams

{A} �� {A
f ��

B

h

��
k ��

g
�� C} {C}�� .

This cospan could be pictured as

A
B

C
g

f h

k

3 The Theorem

Taking colimit of diagrams in E induces a functor

colim : Graph/|E| → E.

Theorem 1. The functor colim : Graph/|E| → E extends to a functor

colim : Cspn(Graph/|E|) → cospan(E)

which preserves the wscc structure.

The definition of the extended colimit is just applying colimit to cospans. It
is straightforward that this colim preserves the constants of wscc structure of
Cspn(Graph/|E|), and that colim of the cospan of the diagram

{A} �� {A
f �� B} {B}��

is f : A ←→ B. The fact that colim preserves the tensor is also clear. What
remains to prove is the fact that colim is a functor – we outline the proof below.

Calculating Colimits Compositionally 585

Another special case of colim is worth remarking. Consider a cospan in which
the centre diagram is also discrete, so that we may consider the cospan to be of
the form

{Ai}(i∈I)
φ:I→J �� {Bj}(j∈J) {Ck}(k∈K)

ψ:J←K�� .

Then colimit applied to this cospan is

Σi∈IAi
colim(φ) �� Σj∈JBj Σk∈KCk

colim(ψ)�� ,

where colim(φ) · inji = injφ(i) (i ∈ I) and colim(ψ) · injk = injψ(k) (k ∈ K)

Remark 1. Cspn(Graph/|E|) is the result of freely adding wscc category struc-
ture to the graph |E| (a special case of this result was proved in [22]). This
means that diagrams in |E| may be written as expressions in the wscc structure
of Cspn(Graph/|E|) with constants being the cospans of the form f for arrows
f of |E|.

Then colim preserves wscc expressions, so the colimit of any diagram may be
written as an expression in cospan(E). This is the compositionality of the calcu-
lation of colimits, mentioned in the title.

3.1 The Example of Coequalizers

Consider the following cospan of diagrams in E:

{A} �� {A
f ��

g
�� B} {B}�� .

The cospan of diagrams may be pictured, as described above, as

A B.

g

f

It is clear from the picture that the cospan may be expressed as the following
composite in Cspn(Graph/|E|) :

{A} �� Δ �� {A} + {A} �� {f}+{g} �� {B} + {B} �� ∇ �� {B}.

Applying colimit we see that the coequalizer of f and g may be expressed as the
composite in cospan(E)

A �� Δ �� A + A �� f+g �� B + B �� ∇ �� B.

586 R. Rosebrugh, N. Sabadini, and R.F.C. Walters

The composite of these three cospans is the pushout Q of the following diagram
in E

A
1A

���
��

��
��

� A + A

∇

����
��

��
��

�
f+g

����������� B + B

1

�����������
∇

		��
��

��
��

� B
1B

��
��

��
��

A

������������������������ B + B B

������������������������

Q

It is easy to verify directly that Q so defined is the coequalizer of f and g.

Example 2. By the same kind of reasoning the colimit of the diagram in example
1 may be given by the expression of cospans in E

(εB +C) · (h+B +k) · (Δ+B) ·Δ · (∇+ εA) · (f +B +g +A) · (A+ ηB +A) ·Δ.

Remark 2. Theorem 1 has an analogue for limits. If E has finite limits the functor
lim : (Graph/|E|)op → E extends to a functor

lim : Cspn(Graph/|E|) → span(E)

which preserves the wscc structure. This permits the compositional calculation

of finite limits in E. In fact the equalizer of two arrows A
f ��

g
�� B may be cal-

culated by the same expression as that of the coequalizer above but evaluated in
span(E) rather than cospan(E), since in both cases the expression is determined
by the wscc structure of Cspn(Graph/|E|).

3.2 Sketch of Proof of Theorem

The main point to check in showing that colim is a monoidal functor is (a special
case of) the following:

Consider a diagram D of diagrams in E parametrized by a graph G; that is,
a graph morphism D : G → Graph/|E|. We can do two things.
(1) Calculate first the colimit of D in Graph/|E| to obtain a diagram in E of
which we may then take the colimit in E, that is calculate

colimE(colimGraph/|E|(D)).

(2) Calculate the colimit of

G
D �� Graph/E colim �� E

that is, calculate colimE(colimE · D).

Calculating Colimits Compositionally 587

Lemma colimE(colimGraph/|E|(D)) ∼= colimE(colimE · D).
Sketch of proof.
It suffices to show for any X ∈ E a bijection between cocones

colimGraph/|E|(D) −→ X

and cocones
colimE · D −→ X

But it is not hard to show that both of these are equivalent to a “compatible
family” of cocones

D(g) −→ X (g ∈ G).

A Very Special Case. Consider a diagram D of diagrams in E, namely

D = {{A} {B C}}.

Then

colimE(colimGraph/|E|(D)) = colimE({A B C}) = A + B + C,

whereas

colimE(colimE · D) = colimE({A B + C}) = A + (B + C).

The lemma says exactly that the triple sum may be formed by repeated double
sums, which has as a consequence the associative law for sums. It is clear that
the general form of the lemma implies many further “associative laws” - any two
wscc expressions which yield the same diagram evaluate to the same object in
cospan(E).

3.3 Example of Theorem

A general cospan in Cspn(Graph/|E|) from Ø to Ø with centre D may be
constructed by taking the disjoint sum of all the arrows, and then equating
vertices appropriately. This yields a formula for the general colimit of a finite
diagram as follows. Let Σdom denote the graph

∑
α∈D{dom(α)} and Σcod denote

the graph
∑

α∈D{codom(α)}. Let Σα denote the graph
∑

α∈D{α}. Let Σobj

denote the diagam consisting of all the objects in the D. Finally, let idom and
icod denote the discrete cospans corresponding to the domain and codomain
functions on the arrows of the graph parametrizing D. Then the cospan may be
written

{} �� η �� Σdom + Σdom ��icod·(
�

α)+idom �� Σobj + Σobj {}��ε�� .

Evaluating this formula instead in cospan(E) gives the classical formula for col-
imits in terms of the coequalizer of two arrows from

∑
α∈D dom(α) to

∑
A∈D A

(α arrow in D, A object in D).

588 R. Rosebrugh, N. Sabadini, and R.F.C. Walters

4 Limits and Colimits of Monoidal Diagrams

Systems in computer science are not usually constructed from parts with one
input and one output, like arrows in a graph. Components have multiple inputs
and outputs; that is, they are arrows in a monoidal graph.

Definition 2. A monoidal graph (A, V, d0, d1) consists of a set V of vertices,
and a set A of arcs and two functions d0, d1 : A −→ V ∗ (V ∗ the free monoid
on V). A morphism of monoidal graphs φ = (φ0, φ1) from (A, V, d0, d1) to
(B, W, d0, d1) consists of two functions φ1 : A → B and φ0 : V → W such
that φ∗0d0 = d0φ1, φ

∗
0d1 = d1φ1. We denote the category (actually a presheaf

category) of monoidal graphs as MonGraph. There is an obvious notion then of
a monoidal diagram in a monoidal category since any monoidal category has an
underlying monoidal graph.

Definition 3. Let E be a category with finite colimits, regarded as a monoidal
category with sum as tensor. A cocone q of a monoidal diagram D to an object
X is a family of arrows (qi : Ai −→ X) (Ai objects of the diagram D) such
that for any arrow f : Ai1 + Ai2 + · · · + Aim → Aj1 + Aj1 + · · · + Ajn in the
diagram

(qj1 |qj2 |qjn | · · · |qjn) · f = (qi1 |qi2 |qi3 · · · |qim).

A colimit of monoidal diagram D is an object C with a cocone q from D which
is univeral; that is, any cocone to an object X factors uniquely through q.

4.1 Cspn(MonGraph/|E|)

Let E be a category with finite colimits, regarded as a monoidal category with
sum as tensor, and let |E| denote the underlying monoidal graph of E. Then
Cspn(MonGraph/|E|) denotes the full subcategory of cospan(MonGraph/|E|)
whose objects are discrete diagrams in E. Just as with Cspn(Graph/|E|) we may
picture arrows in Cspn(MonGraph/|E|), the only difference being that compo-
nents may have several input and output wires. Monoidal colimits may also be
calculated compositionally, in the algebra cospan(E), by a result analogous to
Theorem 1. Taking the monoidal colimit of diagrams in E induces a functor

moncolim : MonGraph/|E| → E.

Theorem 2. The functor moncolim : MonGraph/|E| → E extends to a
functor

moncolim : Cspn(MonGraph/|E|) → cospan(E)

which preserves the wscc structure.

We look at one example only.

Calculating Colimits Compositionally 589

4.2 Example

Consider the following cospan of monoidal diagrams D in E: the centre is the
diagram with three objects A, B, C, and one arrow f : A+ C → B +C; the left
hand side is the diagram {A}; the right hand side is the diagram {B}. Pictured,
the cospan is

A B

C C

f

From the picture we see immediately that this cospan of diagrams is expressible
as a composite in Cspn(MonGraph/|E|), namely

{A} ��
{A}+η{C} �� {A} + {C} + {C} �� {f}+{C} �� {B} + {C} + {C} ��

{B}+ε{C} �� {B} .

Applying monoidal colimit yields the fact that the monoidal colimit of the orig-
inal diagram is the following composite in cospan(E):

A ��A+ηC �� A + C + C �� f+C �� B + C + C ��B+εC �� B .

Hence the colimit of the original diagram can be calculated as the pushout below.

A
inj

						
	 A + C + C

A+∇
��

 f+C

��������� B + C + C
B+C+C

������� B+∇
��

 B

inj

�������

A + C

��������������������� B + C + C B + C

��������������������

colim

The colimit consists of orbits of A+B+C under f . The pullback of the resulting

cospan is the partial function obtained by iterating f .

5 The Kleene Theorem

Theorem 3. (Kleene)
The languages recognized by finite state automata are the closure of singletons
under union, concatenation and iteration.

To prove this classical theorem the category E we consider is ℘(Σ∗)-Cat, cate-
gories enriched in Σ-languages. There is a composite of wscc functors

Cspn(Graph/Σ)
Φ1 �� Cspn(Graph/℘(Σ∗))

Φ2 �� cospan(℘(Σ∗)-Cat).

590 R. Rosebrugh, N. Sabadini, and R.F.C. Walters

which takes a labelled graph (with input and output states) to the ℘(Σ*)-
category whose homs are the languages traced out from the domain to the
codomain. The existence of wscc functor Φ1 is implied by [22], and of Φ2 (=colim)
by Theorem 1.

This is already a Kleene-type theorem since, conceptually, the Kleene Theo-
rem says that behaviour is an operation-preserving morphism from an algebra of
systems to an algebra of possible behaviours, which implies that the perceived
behaviours are the smallest class of possible behaviours closed under operations.
In this case, the algebra of systems, that is the left-hand side, is generated as a
wscc category by single labelled edges, and hence the image on the right-hand
side is also generated as a wscc category by singleton languages.

However it is not the classical Kleene theorem, since the right-hand side does
not consist of single languages and the wscc operations of cospan(℘(Σ∗)-Cat)
are not the Kleene operations. Further the functor does not lose internal states.

To obtain a theorem closer to the classical Kleene theorem we consider core-
lations between ℘(Σ*) categories, by which we mean cospans which are jointly
bijective on objects. Then we compose the above wscc functor Φ2Φ1 with a
further wscc functor

Φ3 : cospan(℘(Σ∗)-Cat) −→ corel(℘(Σ∗)-Cat)

which uses the bijective-on-objects fully-faithful factorization to obtain from a
cospan of ℘(Σ*)-categories a corelation of ℘(Σ*)-categories.

The final composite

Φ3Φ2Φ1 : Cspn(Graph/Σ) −→ corel(℘(Σ∗)-Cat)

takes a labelled graph with initial and final states to the category with objects
only the initial and final states, and whose homs are the languages traced out.

To finish a proof of the classical Kleene theorem we need to show that the
wscc operations in corel(℘(Σ∗)-Cat), at the level of languages (homs), may be
expressed in terms of union, concatenation and ()∗.

Clearly the operation of tensor of corelations does not change the languages
which occur as homs. The problem is the composition. But in a wscc category
the composition of two arrows may be expressed in terms of the tensor and
composition with the constants of the compact closed structure; pictured, this
is the fact that:

=

So the general operation of composition in corel(℘(Σ∗)-Cat) may be reduced
to the very special case of the colimit identifying two objects in a category.

Calculating Colimits Compositionally 591

Consider a ℘(Σ∗)-category X containing two objects x and y. The colimit cat-
egory X ′ = X/(x = y) has hom X ′(z, w) equal to

X(z,w)∪(X(z,x)∪X(z,y))·(X(x,x)∪X(x,y)∪X(y,x)∪X(y,y))∗·(X(x,w)∪X(y,w)),

expressible using only Kleene operations. Hence the result.
This proof is very close to one of the usual proofs of Kleene (if you strip

the superstructure). Notice that the passage Φ1 permits the introduction of ε
moves; that is, homs which consist of the empty word. The superstructure has
the advantage of suggesting needed generalizations, for example, to parallelism.

6 Comments

The theorem we have described concerns calculating colimits as objects, not
as functors. We have not shown the compositionality of morphisms between
colimits. We believe that this is connected with the algebra of span and cospan
as symmetric monoidal bicategories, rather than as categories. We have made
initial progress in understanding this question in [18], by considering a very
special case, where we identify the role of 2-separable object.

There is a more precise relation between this work and the paper of Ugo
Montanari and José Meseguer [19]. Monoidal graphs may be thought of as Petri
nets without markings. Processes of a net G are arrows in the free symmetric
monoidal category on G. But in [5] we show that the free symmetric monoidal
category on G is an easily identifiable subcategory of Cspn(MonGraph/G),
with the same objects as Cspn(MonGraph/G), but with arrows being cospans
of “linear monoidal diagrams”, that is, those parametrized by monoidal graphs
without loops, forking or merging. Linear monoidal diagrams are a generalization
of paths in a graph. (Other classes of free categories are similarly obtainable by
specializing the type of graphs in the cospans).

References

1. Abramsky, S., Coecke, B.: A Categorical Semantics of Quantum Protocols. In:
Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science:
LICS 2004, pp. 415–425. IEEE Computer Society, Los Alamitos (2004)

2. Bloom, S.L., Esik, Z.: Iteration Theories: the equational logic of iterative processes.
EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (1993)

3. Bruni, R., Gadducci, F., Montanari, U.: Normal forms for algebras of connection.
Theor. Comput. Sci. 286(2), 247–292 (2002)

4. Carboni, A., Walters, R.F.C.: Cartesian bicategories I. Journal of Pure and Applied
Algebra 49, 11–32 (1987)

5. de Francesco Albasini, L., Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Cospans
and free symmetric monoidal categories (in preparation)

6. Elgot, C.C.: Monadic computation and iterative algebraic theories, Logoc Collo-
quium 1973, Studies in Logic 80, pp. 175–230. North Holland, Amsterdam (1975)

592 R. Rosebrugh, N. Sabadini, and R.F.C. Walters

7. Gadducci, F., Heckel, R.: An inductive view of graph transformation. In: Parisi-
Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 223–237. Springer, Heidelberg
(1998)

8. Gadducci, F., Heckel, R., Llabrés, M.: A bi-categorical axiomatisation of concurrent
graph rewriting. In: Proc. CTCS 1999, Category Theory and Computer Science.
Electronic Notes in Theoretical Computer Science, vol. 29, Elsevier Sciences, Am-
sterdam (1999)

9. Joyal, A., Street, R.H.: The geometry of tensor calculus I. Advances in Math. 88,
55–112 (1991)

10. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Mathematical Pro-
ceedings of the Cambridge Philosophical Society 119(3), 447–468 (1996)

11. Katis, P., Sabadini, N., Walters, R.F.C.: Bicategories of processes. Journal of Pure
and Applied Algebra 115, 141–178 (1997)

12. Katis, P., Sabadini, N., Walters, R.F.C.: Span(Graph): A categorical algebra of
transition systems. In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 307–
321. Springer, Heidelberg (1997)

13. Katis, P., Sabadini, N., Walters, R.F.C.: On the algebra of systems with feedback
and boundary. Rendiconti del Circolo Matematico di Palermo Serie II Suppl. 63,
123–156 (2000)

14. Katis, P., Sabadini, N., Walters, R.F.C.: A formalisation of the IWIM Model. In:
Porto, A., Roman, G.-C. (eds.) COORDINATION 2000. LNCS, vol. 1906, pp.
267–283. Springer, Heidelberg (2000)

15. Katis, P., Sabadini, N., Walters, R.F.C.: Feedback, trace and fixed-point semantics.
Theoret. Informatics Appl. 36, 181–194 (2002)

16. Kelly, G.M., Laplaza, M.L.: Coherence for compact closed categories. J. Pure Appl.
Algebra 19, 193–213 (1980)

17. Kock, J.: Frobenius algebras and 2D topological Quantum Field Theories. Cam-
bridge University Press, Cambridge (2004)

18. Menni, M., Sabadini, N., Walters, R.F.C.: A universal property of the monoidal
2-category of cospans of ordinals and surjections. Theory and Applications of Cat-
egories 18(19), 631–653 (2007)

19. Meseguer, J., Montanari, U.: Petri Nets Are Monoids. Information and Computa-
tion 88, 105–155 (1990)

20. Penrose, R.: Applications of negative dimensional tensors. In: Combinatorial Math-
ematics and its Applications, p. 221. Academic Press, London (1971)

21. Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Minimization and minimal realiza-
tion in Span(Graph). Mathematical Structures in Computer Science 14, 685–714
(2004)

22. Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Generic commutative separable alge-
bras and cospans of graphs. Theory and Applications of Categories 15(6), 264–277
(2005)

23. Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Calculating colimits and limits com-
positionally. Category Theory 2007, Carvoeiro, Portugal, 18th (June 2007)

24. Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Calculating colimits and limits com-
positionally (in preparation)

25. Walters, R.F.C.: Lecture to the Sydney Category Seminar (January 26, 1983)
26. Walters, R.F.C.: The tensor product of matrices, Lecture. In: International Con-

ference on Category Theory, Louvain-la-Neuve (1987)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

