17 research outputs found
Interaction of nucleoside inhibitors of HIV-1 reverse transcriptase with the concentrative nucleoside transporter-1 (SLC28A1)
Human concentrative nucleoside transporter-1 (hCNT1) (SLC28A1) is a widely expressed, high-affinity, pyrimidine-preferring, nucleoside transporter implicated in the uptake of naturally occurring pyrimidine nucleosides as well as a variety of derivatives used in anticancer treatment. Its putative role in the uptake of other pyrimidine nucleoside analogues with antiviral properties has not been studied in detail to date. Here, using a hCNT1 stably transfected cell line and the two-electrode voltage-clamp technique, we have assessed the interaction of selected pyrimidine-based antiviral drugs, inhibitors of HIV-1 reverse transcriptase such as zidovudine (AZT), stavudine (d4T), lamivudine (3TC) and zalcitabine (ddC), with hCNT1. hCNT1 transports AZT and d4T with low affinity, whereas 3TC and ddC are not translocated, the latter being able to bind the transporter protein. Selectivity appears to rely mostly upon the presence of a hydroxyl group in the 3'-position of the ribose ring. Thus, hCNT1 cannot be considered a broad-selectivity pyrimidine nucleoside carrier; in fact, very slight changes in substrate structure provoke a dramatic shift in selectivity
Uridine Metabolism in HIV-1-Infected Patients: Effect of Infection, of Antiretroviral Therapy and of HIV-1/ART-Associated Lipodystrophy Syndrome
Background Uridine has been advocated for the treatment of HIV-1/HAART-associated lipodystrophy (HALS), although its metabolism in HIV-1-infected patients is poorly understood. Methods Plasma uridine concentrations were measured in 35 controls and 221 HIV-1-infected patients and fat uridine in 15 controls and 19 patients. The diagnosis of HALS was performed following the criteria of the Lipodystrophy Severity Grading Scale. Uridine was measured by a binary gradient-elution HPLC method. Analysis of genes encoding uridine metabolizing enzymes in fat was performed with TaqMan RT-PCR. Results Median plasma uridine concentrations for HIV-1-infected patients were 3.80 µmol/l (interquartile range: 1.60), and for controls 4.60 µmol/l (IQR: 1.8) (P = 0.0009). In fat, they were of 6.0 (3.67), and 2.8 (4.65) nmol/mg of protein, respectively (P = 0.0118). Patients with a mixed HALS form had a median plasma uridine level of 4.0 (IC95%: 3.40-4.80) whereas in those with isolated lipoatrophy it was 3.25 (2.55-4.15) µmol/l/l (P = 0.0066). The expression of uridine cytidine kinase and uridine phosphorylase genes was significantly decreased in all groups of patients with respect to controls. A higher expression of the mRNAs for concentrative nucleoside transporters was found in HIV-1-infected patients with respect to healthy controls. Conclusions HIV-1 infection is associated with a decrease in plasma uridine and a shift of uridine to the adipose tissue compartment. Antiretroviral therapy was not associated with plasma uridine concentrations, but pure lipoatrophic HALS was associated with significantly lower plasma uridine concentrations
Interaction of nucleoside inhibitors of HIV-1 reverse transcriptase with the concentrative nucleoside transporter-1 (SLC28A1)
Human concentrative nucleoside transporter-1 (hCNT1) (SLC28A1) is a widely expressed, high-affinity, pyrimidine-preferring, nucleoside transporter implicated in the uptake of naturally occurring pyrimidine nucleosides as well as a variety of derivatives used in anticancer treatment. Its putative role in the uptake of other pyrimidine nucleoside analogues with antiviral properties has not been studied in detail to date. Here, using a hCNT1 stably transfected cell line and the two-electrode voltage-clamp technique, we have assessed the interaction of selected pyrimidine-based antiviral drugs, inhibitors of HIV-1 reverse transcriptase such as zidovudine (AZT), stavudine (d4T), lamivudine (3TC) and zalcitabine (ddC), with hCNT1. hCNT1 transports AZT and d4T with low affinity, whereas 3TC and ddC are not translocated, the latter being able to bind the transporter protein. Selectivity appears to rely mostly upon the presence of a hydroxyl group in the 3'-position of the ribose ring. Thus, hCNT1 cannot be considered a broad-selectivity pyrimidine nucleoside carrier; in fact, very slight changes in substrate structure provoke a dramatic shift in selectivity
Concentrative nucleoside transporter 1 (hCNT1) promotes phenotypic changes relevant to tumor biology in a translocation independent manner
Nucleoside transporters (NTs) mediate the uptake of nucleosides and nucleobases across the plasma membrane, mostly for salvage purposes. The canonical NTs belong to two gene families, SLC29 and SLC28. The former encode equilibrative nucleoside transporter proteins (ENTs), which mediate the facilitative diffusion of natural nucleosides with broad selectivity, whereas the latter encode concentrative nucleoside transporters (CNTs), which are sodium-coupled and show high affinity for substrates with variable selectivity. These proteins are expressed in most cell types, exhibiting apparent functional redundancy. This might indicate that CNTs play specific roles in the physiology of the cell beyond nucleoside salvage. Here, we addressed this possibility using adenoviral vectors to restore tumor cell expression of hCNT1 or a polymorphic variant (hCNT1S546P) lacking nucleoside translocation ability. We found that hCNT1 restoration in pancreatic cancer cells significantly altered cell-cycle progression and phosphorylation status of key signal-transducing kinases, promoted poly-(ADP ribose) polymerase hyperactivation and cell death, and reduced tumor growth and cell migration. Importantly, the translocation-defective transporter triggered these same effects on cell physiology. These data predict a novel and totally unexpected biological role for the nucleoside transporter protein hCNT1 that appears to be independent of its role as mediator of nucleoside uptake by cells, thereby suggesting a transceptor function. Cell Death & Disease Anastasis Stephanou Receiving Editor Cell Death & Disease 19th Apr 2013 Dr Perez-Torras Av/ Diagonal 643. Edif. Prevosti, Pl -1 Barcelona 08028 Spain RE: Manuscript CDDIS-13-0136R, 'CDDIS-13-0136R' Dear Dr Perez-Torras, It is a pleasure to inform you that your manuscript has been evaluated at the editorial level and has now been officially accepted for publication in Cell Death & Disease, pending you meet the following editorial requirements: 1) the list of the abbreviations is missing please include Could you send us the revised text as word file via e-mail and we will proceed and transfer the paper onto our typesetters. Please download, print, sign, and return the Licence to Publish Form using the link below. This must be returned via FAX to ++ 39 06 7259 6977 before your manuscript can be published