2,634 research outputs found

    Community responses to tourism and crime

    Get PDF
    Tourism is known to bring about positive and negative changes to destinations. This paper explores how tourism business owners’ lives and residents within the tourism area of an English seaside resort respond in their behaviour as a consequence of tourism-related crime and their fear of such crimes. Through a mixture of primary and secondary data analysis it is clear that crime in the case study area increases during the tourism season. The results suggested that these are changes in behaviour made by parking in different locations; socialising differently; bypassing specific streets at night; and carrying out additional security checks in the home. Perceptions of the destination and of criminal activity were found to vary in relation to occupation and involvement with the tourism industry, and there were associations with socio-demographic variables and the level of attachment to the town

    Physical properties of a very diffuse HI structure at high Galactic latitude

    Get PDF
    The main goal of this analysis is to present a new method to estimate the physical properties of diffuse cloud of atomic hydrogen observed at high Galactic latitude. This method, based on a comparison of the observations with fractional Brownian motion simulations, uses the statistical properties of the integrated emission, centroid velocity and line width to constrain the physical properties of the 3D density and velocity fields, as well as the average temperature of HI. We applied this method to interpret 21 cm observations obtained with the Green Bank Telescope of a very diffuse HI cloud at high Galactic latitude located in Firback North 1. We first show that the observations cannot be reproduced solely by highly-turbulent CNM type gas and that there is a significant contribution of thermal broadening to the line width observed. To reproduce the profiles one needs to invoke two components with different average temperature and filling factor. We established that, in this very diffuse part of the ISM, 2/3 of the column density is made of WNM and 1/3 of thermally unstable gas (T ~2600 K). The WNM gas is mildly supersonic (~1) and the unstable phase is definitely sub-sonic (~0.3). The density contrast (i.e., the standard deviation relative to the mean of density distribution) of both components is close to 0.8. The filling factor of the WNM is 10 times higher that of the unstable gas, which has a density structure closer to what would be expected for CNM gas. This field contains a signature of CNM type gas at a very low level (N_H ~ 3 x 10^19) which could have been formed by a convergent flow of WNM gas.Comment: 13 pages, 12 figures, accepted for publication in A&

    Evolution of spin correlations in SrDy2O4 in an applied magnetic field

    Get PDF
    The development of short- and long-range magnetic order induced in a frustrated zig-zag ladder compound SrDy2O4 by an applied field is studied using neutron diffraction techniques. In zero field, SrDy2O4 lacks long-range magnetic order down to temperatures as low as 60 mK, and the observed powder neutron diffraction (PND) patterns are dominated by very broad diffuse scattering peaks. Single crystal neutron diffraction reveals that the zero-field magnetic structure consists of a collection of antiferromagnetic chains running along the c axis and that there is very little correlation between the chains in the ab plane. In an applied magnetic field, the broad diffuse scattering features in PND are gradually replaced by much sharper peaks, however, the pattern remains rather complex, reflecting the highly anisotropic nature of SrDy2O4. Single crystal neutron diffraction shows that a moderate field applied along the b axis induces an up-up-down magnetic order associated with a 1/3-magnetisation plateau, in which magnetic correlation length in the ab plane is significantly increased, but it nevertheless remains finite. The resolution limited k = 0 peaks associated with a ferromagnetic arrangement appear in powder and single crystal neutron diffraction patterns in fields of 2.5 T and above.Comment: 10 pages, 11 figure

    Characterizing precursors to stellar clusters with Herschel

    Get PDF
    Context. Despite their profound effect on the universe, the formation of massive stars and stellar clusters remains elusive. Recent advances in observing facilities and computing power have brought us closer to understanding this formation process. In the past decade, compelling evidence has emerged that suggests infrared dark clouds (IRDCs) may be precursors to stellar clusters. However, the usual method for identifying IRDCs is biased by the requirement that they are seen in absorption against background mid-IR emission, whereas dust continuum observations allow cold, dense pre-stellar-clusters to be identified anywhere. Aims: We aim to understand what dust temperatures and column densities characterize and distinguish IRDCs, to explore the population of dust continuum sources that are not IRDCs, and to roughly characterize the level of star formation activity in these dust continuum sources. Methods: We use Hi-GAL 70 to 500 mdatatoidentifydustcontinuumsourcesintheell=30degandell=59degHi−GALsciencedemonstrationphase(SDP)fields,tocharacterizeandsubtracttheGalacticcirrusemission,andperformpixel−by−pixelmodifiedblackbodyfitsoncirrus−subtractedHi−GALsources.WeutilizearchivalSpitzerdatatoindicatethelevelofstar−formingactivityineachpixel,frommid−IR−darktomid−IR−bright.Results:WepresenttemperatureandcolumndensitymapsintheHi−GALell=30degandell=59degSDPfields,aswellasarobustalgorithmforcirrussubtractionandsourceidentificationusingHi−GALdata.WereportonthefractionofHi−GALsourcepixelswhicharemid−IR−dark,mid−IR−neutral,ormid−IR−brightinbothfields.Wefindsignificanttrendsincolumndensityandtemperaturebetweenmid−IR−darkandmid−IR−brightpixels;mid−IR−darkpixelsareabout10Kcolderandhaveafactorof2highercolumndensityonaveragethanmid−IR−brightpixels.WefindthatHi−GALdustcontinuumsourcesspanarangeofevolutionarystatesfrompre−tostar−forming,andthatwarmersourcesareassociatedwithmorestarformationtracers.Additionally,thereisatrendofincreasingtemperaturewithtracertypefrommid−IR−darkatthecoldest,tooutflow/masersourcesinthemiddle,andfinallyto8and24m data to identify dust continuum sources in the ell = 30deg and ell = 59deg Hi-GAL science demonstration phase (SDP) fields, to characterize and subtract the Galactic cirrus emission, and perform pixel-by-pixel modified blackbody fits on cirrus-subtracted Hi-GAL sources. We utilize archival Spitzer data to indicate the level of star-forming activity in each pixel, from mid-IR-dark to mid-IR-bright. Results: We present temperature and column density maps in the Hi-GAL ell = 30deg and ell = 59deg SDP fields, as well as a robust algorithm for cirrus subtraction and source identification using Hi-GAL data. We report on the fraction of Hi-GAL source pixels which are mid-IR-dark, mid-IR-neutral, or mid-IR-bright in both fields. We find significant trends in column density and temperature between mid-IR-dark and mid-IR-bright pixels; mid-IR-dark pixels are about 10 K colder and have a factor of 2 higher column density on average than mid-IR-bright pixels. We find that Hi-GAL dust continuum sources span a range of evolutionary states from pre- to star-forming, and that warmer sources are associated with more star formation tracers. Additionally, there is a trend of increasing temperature with tracer type from mid-IR-dark at the coldest, to outflow/maser sources in the middle, and finally to 8 and 24 m bright sources at the warmest. Finally, we identify five candidate IRDC-like sources on the far-side of the Galaxy. These are cold (20 K), high column density (N(H2_2) gt 1022^22 cm−2^-2) clouds identified with Hi-GAL which, despite bright surrounding mid-IR emission, show little to no absorption at 8 $m. These are the first inner Galaxy far-side candidate IRDCs of which the authors are aware. Herschel in an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation by NASA.The FITS files discussed in the paper would be released publicly WITH the Hi-GAL data (on the Hi-GAL website) when the Hi-GAL data is released publicly.Peer reviewe

    Sequential and Spontaneous Star Formation Around the Mid-Infrared Halo HII Region KR 140

    Full text link
    We use 2MASS and MSX infrared observations, along with new molecular line (CO) observations, to examine the distribution of young stellar objects (YSOs) in the molecular cloud surrounding the halo HII region KR 140 in order to determine if the ongoing star-formation activity in this region is dominated by sequential star formation within the photodissociation region (PDR) surrounding the HII region. We find that KR 140 has an extensive population of YSOs that have spontaneously formed due to processes not related to the expansion of the HII region. Much of the YSO population in the molecular cloud is concentrated along a dense filamentary molecular structure, traced by C18O, that has not been erased by the formation of the exciting O star. Some of the previously observed submillimetre clumps surrounding the HII region are shown to be sites of recent intermediate and low-mass star formation while other massive starless clumps clearly associated with the PDR may be the next sites of sequential star formation.Comment: Accepted for publication in MNRAS, 8 pages, 10 figure

    Modification of Projected Velocity Power Spectra by Density Inhomogeneities in Compressible Supersonic Turbulence

    Full text link
    (Modified) The scaling of velocity fluctuation, dv, as a function of spatial scale L in molecular clouds can be measured from size-linewidth relations, principal component analysis, or line centroid variation. Differing values of the power law index of the scaling relation dv = L^(g3D) in 3D are given by these different methods: the first two give g3D=0.5, while line centroid analysis gives g3D=0. This discrepancy has previously not been fully appreciated, as the variation of projected velocity line centroid fluctuations (dv_{lc} = L^(g2D)) is indeed described, in 2D, by g2D=0.5. However, if projection smoothing is accounted for, this implies that g3D=0. We suggest that a resolution of this discrepancy can be achieved by accounting for the effect of density inhomogeneity on the observed g2D obtained from velocity line centroid analysis. Numerical simulations of compressible turbulence are used to show that the effect of density inhomogeneity statistically reverses the effect of projection smoothing in the case of driven turbulence so that velocity line centroid analysis does indeed predict that g2D=g3D=0.5. Using our numerical results we can restore consistency between line centroid analysis, principal component analysis and size-linewidth relations, and we derive g3D=0.5, corresponding to shock-dominated (Burgers) turbulence. We find that this consistency requires that molecular clouds are continually driven on large scales or are only recently formed.Comment: 28 pages total, 20 figures, accepted for publication in Ap

    Distribution and mass of diffuse and dense CO gas in the Milky Way

    Get PDF
    This is the final version of the article. Available from American Astronomical Society and IOP Publishing via the DOI in this record.Emission from carbon monoxide (CO) is ubiquitously used as a tracer of dense star-forming molecular clouds. There is, however, growing evidence that a significant fraction of CO emission originates from diffuse molecular gas. Quantifying the contribution of diffuse CO-emitting gas is vital for understanding the relation between molecular gas and star formation. We examine the Galactic distribution of two CO-emitting gas components, a high column density component detected in 13CO and 12CO, and a low column density component detected in 12CO, but not in 13CO. The “diffuse” and “dense” components are identified using a combination of smoothing, masking, and erosion/dilation procedures, making use of three large-scale 12CO and 13CO surveys of the inner and outer Milky Way. The diffuse component, which globally represents 25% (1.5 × 108M⊙) of the total molecular gas mass (6.5 × {10}8 M⊙), is more extended perpendicular to the Galactic plane. The fraction of diffuse gas increases from ∌10%–20% at a galactocentric radius of 3–4 kpc to 50% at 15 kpc, and increases with decreasing surface density. In the inner Galaxy, a yet denser component traced by CS emission represents 14% of the total molecular gas mass traced by 12CO emission. Only 14% of the molecular gas mass traced by 12CO emission is identified as part of molecular clouds in 13CO surveys by cloud identification algorithms. This study indicates that CO emission not only traces star-forming clouds, but also a significant diffuse molecular ISM component.R.S. and R.S.K. acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) for funding through the SPP 1573 “The Physics of the Interstellar Medium” as well as via SFB 881 “The Milky Way System” (sub-projects B12, and B8). R.S.K. also receives funding from the European Research Council under the European Communitys Seventh Framework Program (FP7/2007-2013) via the ERC Advanced Grant “STARLIGHT” (project number 339177)

    An Automated Method for the Detection and Extraction of HI Self-Absorption in High-Resolution 21cm Line Surveys

    Full text link
    We describe algorithms that detect 21cm line HI self-absorption (HISA) in large data sets and extract it for analysis. Our search method identifies HISA as spatially and spectrally confined dark HI features that appear as negative residuals after removing larger-scale emission components with a modified CLEAN algorithm. Adjacent HISA volume-pixels (voxels) are grouped into features in (l,b,v) space, and the HI brightness of voxels outside the 3-D feature boundaries is smoothly interpolated to estimate the absorption amplitude and the unabsorbed HI emission brightness. The reliability and completeness of our HISA detection scheme have been tested extensively with model data. We detect most features over a wide range of sizes, linewidths, amplitudes, and background levels, with poor detection only where the absorption brightness temperature amplitude is weak, the absorption scale approaches that of the correlated noise, or the background level is too faint for HISA to be distinguished reliably from emission gaps. False detection rates are very low in all parts of the parameter space except at sizes and amplitudes approaching those of noise fluctuations. Absorption measurement biases introduced by the method are generally small and appear to arise from cases of incomplete HISA detection. This paper is the third in a series examining HISA at high angular resolution. A companion paper (Paper II) uses our HISA search and extraction method to investigate the cold atomic gas distribution in the Canadian Galactic Plane Survey.Comment: 39 pages, including 14 figure pages; to appear in June 10 ApJ, volume 626; figure quality significantly reduced for astro-ph; for full resolution, please see http://www.ras.ucalgary.ca/~gibson/hisa/cgps1_survey

    Spitzer observations of the Massive star forming complex S254-S258: structure and evolution

    Full text link
    We present Spitzer-IRAC, NOAO 2.1meter-Flamingos, Keck-NIRC, and FCRAO-SEQUOIA observations of the massive star forming complex S254-S258, covering an area of 25x20 arc-minutes. Using a combination of the IRAC and NIR data, we identify and classify the young stellar objects (YSO) in the complex. We detect 510 sources with near or mid IR-excess, and we classify 87 Class I, and 165 Class II sources. The YSO are found in clusters surrounded by isolated YSO in a low-density distributed population. The ratio of clustered to total YSO is 0.8. We identify six new clusters in the complex. One of them, G192.63-00, is located around the ionizing star of the HII region S255. We hypothesize that the ionizing star of S255 was formed in this cluster. We also detect a southern component of the cluster in HII region S256. The cluster G192.54-0.15, located inside HII region S254 has a VLSR of 17 km/s with respect to the main cloud, and we conclude that it is located in the background of the complex. The structure of the molecular cloud is examined using 12CO and 13CO, as well as a near-IR extinction map. The main body of the molecular cloud has VLSR between 5 and 9 km/s. The arc-shaped structure of the molecular cloud, following the border of the HII regions, and the high column density in the border of the HII regions support the idea that the material has been swept up by the expansion of the HII regions.Comment: Accepted for publication in The Astrophysical Journa
    • 

    corecore