370 research outputs found

    Field effect enhancement in buffered quantum nanowire networks

    Get PDF
    III-V semiconductor nanowires have shown great potential in various quantum transport experiments. However, realizing a scalable high-quality nanowire-based platform that could lead to quantum information applications has been challenging. Here, we study the potential of selective area growth by molecular beam epitaxy of InAs nanowire networks grown on GaAs-based buffer layers. The buffered geometry allows for substantial elastic strain relaxation and a strong enhancement of field effect mobility. We show that the networks possess strong spin-orbit interaction and long phase coherence lengths with a temperature dependence indicating ballistic transport. With these findings, and the compatibility of the growth method with hybrid epitaxy, we conclude that the material platform fulfills the requirements for a wide range of quantum experiments and applications

    Antifungal susceptibility testing of <i>Candida </i>species isolated from the immunocompromised patients admitted to ten university hospitals in Iran

    Get PDF
    Abstract Background Antifungal susceptibility testing is a subject of interest in the field of medical mycology. The aim of the present study were the distributions and antifungal susceptibility patterns of various Candida species isolated from colonized and infected immunocompromised patients admitted to ten university hospitals in Iran. Methods In totally, 846 Candida species were isolated from more than 4000 clinical samples and identified by the API 20 C AUX system. Antifungal susceptibility testing was performed by broth microdilution method according to CLSI. Results The most frequent Candida species isolated from all patients was Candida albicans (510/846). The epidemiological cutoff value and percentage of wild-type species for amphotericin B and fluconazole in Candida albicans, Candida tropicalis, Candida glabrata and Candida krusei were 0.5 μg/ml (95%) and 4 μg/ml (96%); 1 μg/ml (95%) and 8 μg/ml (95%); 0.5 μg/ml (99%) and 19 μg/ml (98%); and 4 μg/ml (95%) and 64 μg/ml (95%), respectively. The MIC90 and epidemiological cutoff values to posaconazole in Candida krusei were 0.5 μg/ml. There were significant differences between infecting and colonizing isolates of Candida tropicalis in MIC 90 values of amphotericin B, and isolates of Candida glabrata in values of amphotericin B, caspofungin, and voriconazole (P < 0.05). Conclusions Our findings suggest that the susceptibility patterns of Candida species (colonizing and infecting isolates) in immunocompromised patients are not the same and acquired resistance was seen in some species

    Incidence and spectrum of yeast species isolated from the oral cavity of Iranian patients suffering from hematological malignancies

    Get PDF
    Background: Oral candidiasis (OC) has a profound effect on the life quality of immunocompromised patients, such as those undergoing chemotherapy. Objective: Systematic investigation of clinical outcome and microbiological features of yeast isolates recovered from the oral cavity of 150 Iranian patients with hematological malignancies. Design: MALDI-TOF MS, 21-plex PCR, and rDNA sequencing were used for identification. Antifungal susceptibility testing (broth microdilution, CLSI M27-A3/S4) and genotypic diversity of yeast isolates (amplified fragment length polymorphism) were assessed. Results: Nystatin treatment resulted in 70 therapeutic failure and administration of 150 mg fluconazole (FLZ) + nystatin for patients with OC relapse showed 70 clinical failure. Previous history of OC was significantly correlated with FLZ treatment requirement and nystatin failure (P = 0.005, α < 0.05). Candida albicans (80.3) and Kluyveromyces marxianus (C. kefyr) (12.7) were the two most prevalent yeast species isolated. FLZ and AMB exhibited the highest geometric mean values. 21-PCR showed 98.9 agreement with MALDI-TOF MS. K. marxianus isolates had the same genotype, while C. albicans isolates grouped in 15 genotypes. Conclusions: Marked rate of therapeutic failure of nystatin necessitated OC treatment with systemic antifungals. K. marxianus was the second most prevalent yeast and 21-plex PCR could be considered as an inexpensive identification tool. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

    Incidence and spectrum of yeast species isolated from the oral cavity of Iranian patients suffering from hematological malignancies

    Get PDF
    Background: Oral candidiasis (OC) has a profound effect on the life quality of immunocompromised patients, such as those undergoing chemotherapy. Objective: Systematic investigation of clinical outcome and microbiological features of yeast isolates recovered from the oral cavity of 150 Iranian patients with hematological malignancies. Design: MALDI-TOF MS, 21-plex PCR, and rDNA sequencing were used for identification. Antifungal susceptibility testing (broth microdilution, CLSI M27-A3/S4) and genotypic diversity of yeast isolates (amplified fragment length polymorphism) were assessed. Results: Nystatin treatment resulted in 70 therapeutic failure and administration of 150 mg fluconazole (FLZ) + nystatin for patients with OC relapse showed 70 clinical failure. Previous history of OC was significantly correlated with FLZ treatment requirement and nystatin failure (P = 0.005, α < 0.05). Candida albicans (80.3) and Kluyveromyces marxianus (C. kefyr) (12.7) were the two most prevalent yeast species isolated. FLZ and AMB exhibited the highest geometric mean values. 21-PCR showed 98.9 agreement with MALDI-TOF MS. K. marxianus isolates had the same genotype, while C. albicans isolates grouped in 15 genotypes. Conclusions: Marked rate of therapeutic failure of nystatin necessitated OC treatment with systemic antifungals. K. marxianus was the second most prevalent yeast and 21-plex PCR could be considered as an inexpensive identification tool. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

    Ballistic InSb Nanowires and Networks via Metal-Sown Selective Area Growth

    Get PDF
    Selective area growth is a promising technique to realize semiconductor-superconductor hybrid nanowire networks, potentially hosting topologically protected Majorana-based qubits. In some cases, however, such as the molecular beam epitaxy of InSb on InP or GaAs substrates, nucleation and selective growth conditions do not necessarily overlap. To overcome this challenge, we propose a metal-sown selective area growth (MS SAG) technique, which allows decoupling selective deposition and nucleation growth conditions by temporarily isolating these stages. It consists of three steps: (i) selective deposition of In droplets only inside the mask openings at relatively high temperatures favoring selectivity, (ii) nucleation of InSb under Sb flux from In droplets, which act as a reservoir of group III adatoms, done at relatively low temperatures, favoring nucleation of InSb, and (iii) homoepitaxy of InSb on top of the formed nucleation layer under a simultaneous supply of In and Sb fluxes at conditions favoring selectivity and high crystal quality. We demonstrate that complex InSb nanowire networks of high crystal and electrical quality can be achieved this way. We extract mobility values of 10※000-25※000 cm V s consistently from field-effect and Hall mobility measurements across single nanowire segments as well as wires with junctions. Moreover, we demonstrate ballistic transport in a 440 nm long channel in a single nanowire under a magnetic field below 1 T. We also extract a phase-coherent length of ∼8 μm at 50 mK in mesoscopic rings

    Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi
    corecore