1,488 research outputs found

    A numerical study of a binary Yukawa model in regimes characteristic of globular proteins in solutions

    Full text link
    The main goal of this paper is to assess the limits of validity, in the regime of low concentration and strong Coulomb coupling (high molecular charges), for a simple perturbative approximation to the radial distribution functions (RDF), based upon a low-density expansion of the potential of mean force and proposed to describe protein-protein interactions in a recent Small-Angle-Scattering (SAS) experimental study. A highly simplified Yukawa (screened Coulomb) model of monomers and dimers of a charged globular protein (β\beta -lactoglobulin) in solution is considered. We test the accuracy of the RDF approximation, as a necessary complementary part of the previous experimental investigation, by comparison with the fluid structure predicted by approximate integral equations and exact Monte Carlo (MC) simulations. In the MC calculations, an Ewald construction for Yukawa potentials has been used to take into account the long-range part of the interactions in the weakly screened cases. Our results confirm that the perturbative first-order approximation is valid for this system even at strong Coulomb coupling, provided that the screening is not too weak (i.e., for Debye length smaller than monomer radius). A comparison of the MC results with integral equation calculations shows that both the hypernetted-chain (HNC) and the Percus-Yevick (PY) closures have a satisfactory behavior under these regimes, with the HNC being superior throughout. The relevance of our findings for interpreting SAS results is also discussed.Comment: Physical Review E, in press (2005

    Using Spectral Method as an Approximation for Solving Hyperbolic PDEs

    Full text link
    We demonstrate an application of the spectral method as a numerical approximation for solving Hyperbolic PDEs. In this method a finite basis is used for approximating the solutions. In particular, we demonstrate a set of such solutions for cases which would be otherwise almost impossible to solve by the more routine methods such as the Finite Difference Method. Eigenvalue problems are included in the class of PDEs that are solvable by this method. Although any complete orthonormal basis can be used, we discuss two particularly interesting bases: the Fourier basis and the quantum oscillator eigenfunction basis. We compare and discuss the relative advantages of each of these two bases.Comment: 19 pages, 14 figures. to appear in Computer Physics Communicatio

    Blending using ODE swept surfaces with shape control and C1 continuity

    Get PDF
    Surface blending with tangential continuity is most widely applied in computer aided design, manufacturing systems, and geometric modeling. In this paper, we propose a new blending method to effectively control the shape of blending surfaces, which can also satisfy the blending constraints of tangent continuity exactly. This new blending method is based on the concept of swept surfaces controlled by a vector-valued fourth order ordinary differential equation (ODE). It creates blending surfaces by sweeping a generator along two trimlines and making the generator exactly satisfy the tangential constraints at the trimlines. The shape of blending surfaces is controlled by manipulating the generator with the solution to a vector-valued fourth order ODE. This new blending methods have the following advantages: 1). exact satisfaction of 1C continuous blending boundary constraints, 2). effective shape control of blending surfaces, 3). high computing efficiency due to explicit mathematical representation of blending surfaces, and 4). ability to blend multiple (more than two) primary surfaces

    A novel screen-printed multi-component nanocomposite ink with a pressure sensitive electrical resistance functionality

    Get PDF
    Here, a novel functional ink is described that is composed of multiple nanoscale components and exhibits pronounced touch pressure sensitive electrical properties ideal for applications in switching, sensing and touch sensitive surfaces. The ink can be screen-printed and the as-printed ink displays a large and reproducible touch pressure sensitive electrical resistance and, in contrast to some other composite materials, the resistance changes occur down to the smallest applied pressures. Detailed scanning electron microscopy shows the complex nanoscale structure of the composite that is critical for the electrical behavior. Current-voltage measurements, under static compressive loading, show monotonic non-linear behavior at low compression and ohmic behavior at higher loadings

    Sex differences in metabolic and adipose tissue responses to juvenile-onset obesity in sheep

    Get PDF
    Sex is a major factor determining adipose tissue distribution and the subsequent adverse effects of obesity-related disease including type 2 diabetes. The role of gender on juvenile obesity and the accompanying metabolic and inflammatory responses is not well established. Using an ovine model of juvenile onset obesity induced by reduced physical activity, we examined the effect of gender on metabolic, circulatory, and related inflammatory and energy-sensing profiles of the major adipose tissue depots. Despite a similar increase in fat mass with obesity between genders, males demonstrated a higher storage capacity of lipids within perirenal-abdominal adipocytes and exhibited raised insulin. In contrast, obese females became hypercortisolemic, a response that was positively correlated with central fat mass. Analysis of gene expression in perirenal-abdominal adipose tissue demonstrated the stimulation of inflammatory markers in males, but not females, with obesity. Obese females displayed increased expression of genes involved in the glucocorticoid axis and energy sensing in perirenal-abdominal, but not omental, adipose tissue, indicating a depot-specific mechanism that may be protective from the adverse effects of metabolic dysfunction and inflammation. In conclusion, young males are at a greater risk than females to the onset of comorbidities associated with juvenile-onset obesity. These sex-specific differences in cortisol and adipose tissue could explain the earlier onset of the metabolic-related diseases in males compared with females after obesity

    Social Effects in Science: Modelling Agents for a Better Scientific Practice

    Full text link
    Science is a fundamental human activity and we trust its results because it has several error-correcting mechanisms. Its is subject to experimental tests that are replicated by independent parts. Given the huge amount of information available, scientists have to rely on the reports of others. This makes it possible for social effects to influence the scientific community. Here, an Opinion Dynamics agent model is proposed to describe this situation. The influence of Nature through experiments is described as an external field that acts on the experimental agents. We will see that the retirement of old scientists can be fundamental in the acceptance of a new theory. We will also investigate the interplay between social influence and observations. This will allow us to gain insight in the problem of when social effects can have negligible effects in the conclusions of a scientific community and when we should worry about them.Comment: 14 pages, 5 figure

    What young people want from health-related online resources: a focus group study

    Get PDF
    The growth of the Internet as an information source about health, particularly amongst young people, is well established. The aim of this study was to explore young people's perceptions and experiences of engaging with health-related online content, particularly through social media websites. Between February and July 2011 nine focus groups were facilitated across Scotland with young people aged between 14 and 18 years. Health-related user-generated content seems to be appreciated by young people as a useful, if not always trustworthy, source of accounts of other people's experiences. The reliability and quality of both user-generated content and official factual content about health appear to be concerns for young people, and they employ specialised strategies for negotiating both areas of the online environment. Young people's engagement with health online is a dynamic area for research. Their perceptions and experiences of health-related content seem based on their wider familiarity with the online environment and, as the online environment develops, so too do young people's strategies and conventions for accessing it
    corecore