282 research outputs found

    Plane Strain Polar Elasticity Of Fibre-Reinforced Functionally Graded Materials and Structures

    Get PDF
    This study investigates the flexural response of a linearly elastic rectangular strip reinforced in a functionally graded manner by a single family of straight fibres resistant in bending. Fibre bending resistance is associated with the thickness of fibres which, in turn, is considered measurable through use of some intrinsic material length parameter involved in the definition of a corresponding elastic modulus. Solution of the relevant set of governing differential equations is achieved computationally, with the use of a well-established semi-analytical mathematical method. A connection of this solution with its homogeneous fibre-reinforced material counterpart enables the corresponding homogeneous fibrous composite to be regarded as a source of a set of equivalent functionally graded structures, each one of which is formed through inhomogeneous redistribution of the same volume of fibres within the same matrix material. A subsequent stress and couple-stress analysis provides details of the manner in which the flexural response of the polar structural component of interest is affected by certain types of inhomogeneous fibre distribution

    Axial-flexural coupled vibration and buckling of composite beams using sinusoidal shear deformation theory

    Get PDF
    A finite element model based on sinusoidal shear deformation theory is developed to study vibration and buckling analysis of composite beams with arbitrary lay-ups. This theory satisfies the zero traction boundary conditions on the top and bottom surfaces of beam without using shear correction factors. Besides, it has strong similarity with Euler–Bernoulli beam theory in some aspects such as governing equations, boundary conditions, and stress resultant expressions. By using Hamilton’s principle, governing equations of motion are derived. A displacement-based one-dimensional finite element model is developed to solve the problem. Numerical results for cross-ply and angle-ply composite beams are obtained as special cases and are compared with other solutions available in the literature. A variety of parametric studies are conducted to demonstrate the effect of fiber orientation and modulus ratio on the natural frequencies, critical buckling loads, and load-frequency curves as well as corresponding mode shapes of composite beams

    Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory

    Get PDF
    The first-order shear deformation beam theory for static and free vibration of axially loaded rectangular functionally graded beams is developed. In this theory, the improved transverse shear stiffness is derived from the in-plane stress and equilibrium equation and thus, associated shear correction factor is then obtained analytically. Equations of motion are derived from the Hamilton’s principle. Analytical solutions are presented for simply-supported functionally graded beams. The obtained results are compared with the existing solutions to verify the validity of the developed theory. Effects of the power-law index, material contrast and Poisson’s ratio on the displacements, natural frequencies, buckling loads and load–frequency curves as well as corresponding mode shapes are investigated

    Data assimilation using adaptive, non-conservative, moving mesh models

    Get PDF
    Numerical models solved on adaptive moving meshes have become increasingly prevalent in recent years. Motivating problems include the study of fluids in a Lagrangian frame and the presence of highly localized structures such as shock waves or interfaces. In the former case, Lagrangian solvers move the nodes of the mesh with the dynamical flow; in the latter, mesh resolution is increased in the proximity of the localized structure. Mesh adaptation can include remeshing, a procedure that adds or removes mesh nodes according to specific rules reflecting constraints in the numerical solver. In this case, the number of mesh nodes will change during the integration and, as a result, the dimension of the model's state vector will not be conserved. This work presents a novel approach to the formulation of ensemble data assimilation (DA) for models with this underlying computational structure. The challenge lies in the fact that remeshing entails a different state space dimension across members of the ensemble, thus impeding the usual computation of consistent ensemble-based statistics. Our methodology adds one forward and one backward mapping step before and after the ensemble Kalman filter (EnKF) analysis, respectively. This mapping takes all the ensemble members onto a fixed, uniform reference mesh where the EnKF analysis can be performed. We consider a high-resolution (HR) and a low-resolution (LR) fixed uniform reference mesh, whose resolutions are determined by the remeshing tolerances. This way the reference meshes embed the model numerical constraints and are also upper and lower uniform meshes bounding the resolutions of the individual ensemble meshes. Numerical experiments are carried out using 1-D prototypical models: Burgers and Kuramoto-Sivashinsky equations and both Eulerian and Lagrangian synthetic observations. While the HR strategy generally outperforms that of LR, their skill difference can be reduced substantially by an optimal tuning of the data assimilation parameters. The LR case is appealing in high dimensions because of its lower computational burden. Lagrangian observations are shown to be very effective in that fewer of them are able to keep the analysis error at a level comparable to the more numerous observers for the Eulerian case. This study is motivated by the development of suitable EnKF strategies for 2-D models of the sea ice that are numerically solved on a Lagrangian mesh with remeshing

    On three-dimensional dynamics of fibre-reinforced functionally graded plates when fibres resist bending

    Get PDF
    This communication aims to initiate an investigation towards understanding the influence that fibre bending stiffness has on the three-dimensional dynamic behaviour of fibrous composites with embedded functionally graded stiff fibres. In this context, it (i) formulates the general dynamical problem of a rectangular plate with embedded a single family of straight fibres that possess bending resistance and are distributed in a controlled, functionally graded manner through the plate thickness, and (ii) for simple support boundary conditions, it solves the free relevant vibration problem. The problem formulation is based on principles of polar linear elastic and leads to a high-order set of Navier-type partial differential equations with variable coefficients. For simply supported edge boundaries, solution of these equations is achieved with use of a computationally efficient semi-analytical (so-called fictitious layer) mathematical method. Two types of possible inhomogeneous distributions of straight fibres are considered for computational and numerical result presentation purposes. These are both regarded as possible, realistic types of inhomogeneous redistributions of stiff fibres that in previous studies have been assumed homogeneously distributed throughout the plate body. The presented numerical results examine to a considerable extent the manner that either of the employed types of inhomogeneous fibre redistribution, in conjunction with the fibre ability to resist bending, affects the dynamic behaviour of the fibrous composite plate of interest

    Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory

    Get PDF
    Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory is presented. The core of sandwich beam is fully metal or ceramic and skins are composed of a functionally graded material across the depth. Governing equations of motion and boundary conditions are derived from the Hamilton’s principle. Effects of power-law index, span-to-height ratio, core thickness and boundary conditions on the natural frequencies, critical buckling loads and load–frequency curves of sandwich beams are discussed. Numerical results show that the above-mentioned effects play very important role on the vibration and buckling analysis of functionally graded sandwich beams

    A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams

    Get PDF
    This paper presents a nonlocal sinusoidal shear deformation beam theory for the bending, buckling, and vibration of nanobeams. The present model is capable of capturing both small scale effect and transverse shear deformation effects of nanobeams, and does not require shear correction factors. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion as well as the boundary conditions of the beam are derived using Hamilton’s principle. Analytical solutions for the deflection, buckling load, and natural frequency are presented for a simply supported beam, and the obtained results are compared with those predicted by the nonlocal Timoshenko beam theory. The comparison firmly establishes that the present beam theory can accurately predict the bending, buckling, and vibration responses of short nanobeams where the small scale and transverse shear deformation effects are significant

    Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories

    Get PDF
    In this paper, various higher-order shear deformation beam theories for bending and free vibration of functionally graded beams are developed. The developed theories account for higher-order variation of transverse shear strain through the depth of the beam, and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. A shear correction factor, therefore, is not required. In addition, these theories have strong similarities with Euler–Bernoulli beam theory in some aspects such as equations of motion, boundary conditions, and stress resultant expressions. The material properties of the functionally graded beam are assumed to vary according to power law distribution of the volume fraction of the constituents. Equations of motion and boundary conditions are derived from Hamilton's principle. Analytical solutions are presented, and the obtained results are compared with the existing solutions to verify the validity of the developed theories. Finally, the influences of power law index and shear deformation on the bending and free vibration responses of functionally graded beams are investigated

    A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates

    Get PDF
    A new sinusoidal shear deformation theory is developed for bending, buckling, and vibration of functionally graded plates. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional sinusoidal shear deformation theory, the proposed sinusoidal shear deformation theory contains only four unknowns and has strong similarities with classical plate theory in many aspects such as equations of motion, boundary conditions, and stress resultant expressions. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. Equations of motion are derived from the Hamilton’s principle. The closed-form solutions of simply supported plates are obtained and the results are compared with those of first-order shear deformation theory and higher-order shear deformation theory. It can be concluded that the proposed theory is accurate and efficient in predicting the bending, buckling, and vibration responses of functionally graded plates

    Teleparallel Energy-Momentum Distribution of Spatially Homogeneous Rotating Spacetimes

    Full text link
    The energy-momentum distribution of spatially homogeneous rotating spacetimes in the context of teleparallel theory of gravity is investigated. For this purpose, we use the teleparallel version of Moller prescription. It is found that the components of energy-momentum density are finite and well-defined but are different from General Relativity. However, the energy-momentum density components become the same in both theories under certain assumptions. We also analyse these quantities for some special solutions of the spatially homogeneous rotating spacetimes.Comment: 12 pages, accepted for publication in Int. J. Theor. Phy
    • 

    corecore