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Abstract

In this paper, various higher-order shear deformation beam theories for bending and

free vibration of functionally graded beams are developed. The developed theories

account for higher-order variation of transverse shear strain through the depth of the

beam, and satisfy the stress-free boundary conditions on the top and bottom surfaces of

the beam. A shear correction factor, therefore, is not required. In addition, these theories

have strong similarities with Euler-Bernoulli beam theory in some aspects such as

equations of motion, boundary conditions, and stress resultant expressions. The material

properties of the functionally graded beam are assumed to vary according to power law

distribution of the volume fraction of the constituents. Equations of motion and

boundary conditions are derived from Hamilton’s principle. Analytical solutions are

presented, and the obtained results are compared with the existing solutions to verify the

validity of the developed theories. Finally, the influences of power law index and shear

deformation on the bending and free vibration responses of functionally graded beams

are investigated.
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1. Introduction

Functionally graded materials (FGMs) are a class of composites that have continuous

variation of material properties from one surface to another and thus eliminate the stress

concentration at the interface of the layers found in laminated composites. Typically, a

FGM is made from a mixture of a ceramic and a metal in such a way that the ceramic

can resist high temperature in thermal environments, whereas the metal can decrease the

tensile stress occurring on the ceramic surface at the earlier state of cooling. The FGMs

are widely used in mechanical, aerospace, nuclear, and civil engineering.

Due to increasing of FGM applications in engineering structures, many beam theories

have been developed to predict the response of functionally graded (FG) beams. The

classical beam theory (CBT) known as Euler-Bernoulli beam theory is the simplest one

and is applicable to slender FG beams only. For moderately deep FG beams, the CBT

underestimates deflection and overestimates natural frequency due to ignoring the

transverse shear deformation effect [1-3]. The first-order shear deformation beam theory

(FBT) known as Timoshenko beam theory has been proposed to overcome the

limitations of the CBT by accounting for the transverse shear deformation effect. Since

the FBT violates the zero shear stress conditions on the top and bottom surfaces of the

beam, a shear correction factor is required to account for the discrepancy between the

actual stress state and the assumed constant stress state [4-7]. To avoid the use of a shear

correction factor and have a better prediction of response of FG beams, higher-order

shear deformation theories have been proposed, notable among them are the third-order

theory of Reddy [8-12], the sinusoidal theory of Touratier [13], the hyperbolic theory of

Soldatos [14], the exponential theory of Karama et al. [15], and the unified formulation

of Carrera [16-17]. Higher-order shear deformation theories can be developed based on
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the assumption of a higher-order variation of axial displacement through the depth of

the beam [18-24] or both axial and transverse displacements through the depth of the

beam (i.e. via the use of a unified formulation) [25-27].

In this paper, various higher-order shear deformation beam theories for bending and

free vibration of FG beams are developed based on the assumption of a constant

transverse displacement and higher-order variation of axial displacement through the

depth of the beam. The proposed theories satisfy the zero traction boundary conditions

on the top and bottom surfaces of the beam, thus a shear correction factor is not required.

In addition, these theories have strong similarities with the CBT in many aspects such as

equations of motion, boundary conditions, and stress resultant expressions. Material

properties of FG beams are assumed to vary according to a power law distribution of the

volume fraction of the constituents. Equations of motion and boundary conditions are

derived from Hamilton’s principle. Analytical solutions for bending and free vibration

are obtained for a simply supported beam. Numerical examples are presented to show

the validity and accuracy of present shear deformation theories. The effects of power

law index and shear deformation on the bending and free vibration responses of FG

beams are investigated.

2. Kinematics

Consider a functionally graded beam with length L and rectangular cross section

b h , with b being the width and h being the height. The x-, y-, and z-coordinates

are taken along the length, width, and height of the beam, respectively, as shown in Fig.

1. The formulation is limited to linear elastic material behavior. The displacement fields

of various shear deformation beam theories are chosen based on following assumptions:

(1) the axial and transverse displacements are partitioned into bending and shear



4

components; (2) the bending component of axial displacement is similar to that given by

the CBT; and (3) the shear component of axial displacement gives rise to the higher-

order variation of shear strain and hence to shear stress through the depth of the beam in

such a way that shear stress vanishes on the top and bottom surfaces. Based on these

assumptions, the displacement fields of various higher-order shear deformation beam

theories are given in a general form as

   

 
     

1

2

3

, , , ( )

, , 0

, , , ,

b s

b s

dw dw
u x z t u x t z f z

dx dx
u x z t

u x z t w x t w x t

  



 

(1)

where u is the axial displacement of a point on the midplane of the beam; bw and

sw are the bending and shear components of transverse displacement of a point on the

midplane of the beam; and ( )f z is a shape function determining the distribution of the

transvese shear strain and shear stress through the depth of the beam. The shape

functions ( )f z are choosen to satisfy the stress-free boundary conditions on the top

and bottom surfaces of the beam, thus a shear correction factor is not required. The

displacement fields of the third-order beam theory (TBT) based on Reddy [8],

sinusoidal beam theory (SBT) based on Touratier [13], hyperbolic beam theory (HBT)

based on Soldatos [14], and exponential beam theory (EBT) based on Karama et al. [15]

can be obtained from Eq. (1) by using different shape functions ( )f z given in Table 1.

Noted that the displacement fields of the proposed theories are different with those of

the existing higher-order theories such as TBT [8], SBT [13], HBT [14], and EBT [15].

In the proposed theories, the transverse displacement 3u is partitioned into the bending

and shear parts components (see Eq. (1)), whereas the transverse displacement of the

above-mentioned theories is not partitioned into the bending and shear parts. The



5

partition of transverse displacement into the bending and shear parts helps one to see the

contributions due to shear and bending to the total transverse displacement.

The nonzero strains are given by

2 2

2 2
b s

x

du d w d w
z f

dx dx dx
    (2a)

1 s s
xz

df dw dw
g

dz dx dx
     

 
(2b)

where ( ) 1 /g z df dz  are the shape functions of the transverse shear strains given in

Table 1 for various beam models. These shape functions represent the distribution of the

transverse shear strains, and hence the transverse shear stresses, through the depth of the

beam. Fig. 2 illustrates the transverse shear strain shape function of different models. It

is shown that the distribution of transverse shear strain is approximately parabolic, thus

satisfying the zero shear stress conditions on the top and bottom surfaces of the beam.

3. Equations of motion

Hamilton’s principle is used herein to derive the equations of motion. The principle

can be stated in analytical form as [28]

 2

1

0
t

t
U V K dt     (3)

where t is the time; 1t and 2t are the initial and end time, respectively; U is the

virtual variation of the strain energy; V is the virtual variation of the potential

energy; and K is the virtual variation of the kinetic energy. The variation of the strain

energy of the beam can be stated as

 
2 2

2 20 0

L L
b s s

x x xz xz b sA

d w d w d wd u
U dAdx N M M Q dx

dx dx dx dx

  
    

 
      

 
   (4)

where N , M , and Q are the stress resultants defined as
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xA
N dA  (5a)

b xA
M z dA  (5b)

s xA
M f dA  (5c)

xzA
Q g dA  (5d)

The variation of the potential energy by the applied transverse load q can be written as

 
0

L

b sV q w w dx    (6)

The variation of the kinetic energy can be expressed as

  

   
1 1 2 2 3 30

0 1 20

1 2 2

L

A

L
b b b b

b s b s

s s s s b s s b

K z u u u u u u dAdx

d w dw dw d w
I u u w w w w I u u I

dx dx dx dx

d w dw dw d w dw d w dw d w
J u u K J dx

dx dx dx dx dx dx dx dx

    

 
  

   


  

             
           

   

 



     

   
       

       
 

(7)

where dot-superscript convention indicates the differentiation with respect to the time

variable t ;  z is the mass density; and  0 1 1 2 2 2, , , , ,I I J I J K are the mass inertias

defined as

 0 A
I z dA  (8a)

 1 A
I z z dA  (8b)

 1 A
J f z dA  (8c)

 2
2 A

I z z dA  (8d)

 2 A
J zf z dA  (8e)

 2
2 A

K f z dA  (8f)
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Substituting the expressions for U , V , and K from Eqs. (4), (6), and (7) into Eq.

(3) and integrating by parts versus both space and time variables, and collecting the

coefficients of u , bw , and sw , the following equations of motion of the

functionally graded beam are obtained

0 1 1: b sdN dw dw
u I u I J

dx dx dx
   

 
 (9a)

 
2 2 2

0 1 2 22 2 2
: b b s

b b s

d M du d w d w
w q I w w I I J

dx dx dx dx
      

  
  (9b)

 
2 2 2

0 1 2 22 2 2
: s b s

s b s

d M dQ du d w d w
w q I w w J J K

dx dx dx dx dx
       

  
  (9c)

The boundary conditions are of the form: specify

u or N (10a)

bw or 1 2 2
b b s

b

dM dw dw
Q I u I J

dx dx dx
   

 
 (10b)

sw or 1 2 2
s b s

s

dM dw dw
Q Q J u J K

dx dx dx
    

 
 (10c)

bdw

dx
or bM (10d)

sdw

dx
or sM (10e)

The equations of motion and boundary conditions of the CBT can be obtained from Eqs.

(9) and (10) by setting the shear component of transverse displacement sw equal to

zero.

4. Constitutive equations

FGMs are composite materials made of ceramic and metal. The material properties of

FG beams are assumed to vary continuously through the depth of the beam by a power
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law as [19, 22, 24, 29]

   m c m cP z P P P V   ,
1

2

p

c

z
V

h
   
 

and 1m cV V  (11)

where P represents the effective material property such as Young’s modulus E ,

Poisson’s ratio  , and mass density  ; subscripts m and c represent the metallic

and ceramic constituents, respectively; and p is the power law index which governs

the volume fraction gradation. Fig. 3 illustrates the variation of the volume fraction cV

through the depth of the beam for various values of the power law index. The value of

p equal to zero represents a fully ceramic beam, whereas infinite p indicates a fully

metallic beam. The variation of the combination of ceramic and metal is linear for 1p  .

The linear constitutive relations of a FG beam can be written as

11( )x xQ z  (12a)

55( )xz xzQ z  (12b)

where

11( ) ( )Q z E z (13a)

 55

( )
( )

2 1 ( )

E z
Q z

z



(13b)

By substituting Eq. (2) into Eq. (12) and the subsequent results into Eq. (5), the

constitutive equations for the stress resultants are obtained as

2 2

2 2
b s

s

du d w d w
N A B B

dx dx dx
   (14a)

2 2

2 2
b s

b s

du d w d w
M B D D

dx dx dx
   (14b)

2 2

2 2
b s

s s s s

du d w d w
M B D H

dx dx dx
   (14c)
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s
s

dw
Q A

dx
 (14d)

where

11A
A Q dA  (15a)

11A
B zQ dA  (15b)

11s A
B fQ dA  (15c)

2
11A

D z Q dA  (15d)

11s A
D zfQ dA  (15e)

2
11s A

H f Q dA  (15f)

2
55s A

A g Q dA  (15g)

5. Equations of motion in terms of displacements

By substituting the stress resultants in Eq. (14) into Eq. (9), the equations of motion

can be expressed in terms of displacements ( , ,b su w w ) as

2 3 3

0 1 12 3 3
b s b s

s

d u d w d w dw dw
A B B I u I J

dx dx dx dx dx
    

 
 (16a)

 
3 4 4 2 2

0 1 2 23 4 4 2 2
b s b s

s b s

d u d w d w du d w d w
B D D q I w w I I J

dx dx dx dx dx dx
       

  
  (16b)

 
4 4 2 2 23

0 1 2 23 4 4 2 2 2
b s s b s

s s s s b s

d w d w d w d w d wd u du
B D H A q I w w J J K

dx dx dx dx dx dx dx
        

 
  (16c)

6. Analytical solutions

The above equations of motion are analytically solved for bending and free vibration

problems. The Navier solution procedure is used to determine the analytical solutions



10

for a simply supported beam. The solution is assumed to be of the form

 

 

 

1

1

1

, cos

, sin

, sin

i t
n

n

i t
b bn

n

i t
s sn

n

u x t U e x

w x t W e x

w x t W e x





































(17)

where 1i   , /n L  ,  , ,n bn snU W W are the unknown maximum displacement

coefficients, and  is the natural frequency. The transverse load q is also expanded

in Fourier series as

 
1

sinn
n

q x Q x




 (18)

where nQ is the load amplitude calculated from

0

2
( )sin

L

nQ q x xdx
L

  (19)

The coefficients nQ are given below for some typical loads

0 0

0
0

0 0

( 1) for sinusoidal load

4
( 1,3,5,...) for uniform load

2
sin ( 1,2,3,...) for point load at thecenter

L 2

n

q n q

q
n qQ n

n
Q n Q






  

 


(20)

Substituting the expansions of u , bw , sw , and q from Eqs. (17) and (18) into the

equations of motion Eq. (16), the analytical solutions can be obtained from the

following equations

11 12 13 11 12 13
2

12 22 23 12 22 23

13 23 33 13 23 33

0n

bn n

sn n

s s s m m m U

s s s m m m W Q

s s s m m m W Q


        
               

               

(21)

where
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2 3 3 4 4 4 2
11 12 13 22 23 33

2 2 2
11 0 12 1 13 1 22 0 2 23 0 2 33 0 2

, , , , ,

, , , , ,

s s s ss A s B s B s D s D s H A

m I m I m J m I I m I J m I K

      

    

        

          
(22)

7. Results and discussion

In this section, various numerical examples are presented and discussed to verify the

accuracy of present theories in predicting the bending and free vibration responses of

simply supported FG beams. For numerical results, an Al/Al2O3 beam composed of

aluminum (as metal) and alumina (as ceramic) is considered. The material properties of

aluminum are 70mE  GPa, 0.30m  , and 2702m  kg/m3, and those of alumina

are 380cE  GPa, 0.3c  , and 3960c  kg/m3 [23]. For convenience, the following

dimensionless forms are used:

 

3 3

4 4
0 0

2

0 0

100 , 100 0,
2 2

, , 0,0 ,
2 2

m m

m
x x xz xz

m

E h L E h h
w w u u

q L q L

h L h h L

q L q L h E

 
    

        
   

    
 

(23)

7.1. Results for bending analysis

Table 2 contains the nondimensional deflections and stresses of FG beams under

uniform load 0q for different values of power law index p and span-to-depth ratio

/L h . The calculated values based on the present TBT, SBT, HBT, EBT, and CBT are

obtained using 100 terms in series in Eq. (20). It is worth noting that the results of Li et

al. [22] are evaluated based on the analytical solutions given in the Appendix B in the

Ref. [22]. It can be observed that the values obtained using various shear deformation

beam theories (i.e., TBT, SBT, HBT, and EBT) are in good agreement with the those

given by Li et al. [22] for all values of power law index p and span-to-depth ratio

/L h . Due to ignoring the shear deformation effect, CBT underestimates deflection of
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moderately deep beams ( / 5L h  ). The maximum difference in transverse deflection

between CBT and shear deformation beam theories is 13% for 10p  . Figs. 4-6 show

the variations of axial displacement u , axial stress x , and transverse shear stress xz ,

respectively, through the depth of a very deep beam ( 2L h ) under uniform load. In

general, all shear deformation beam models give almost identical results, except for the

case of transverse shear stress xz . It can be explained by the different transverse shear

strain shape functions ( )g z used in each models (see Fig. 2).

To illustrate the effect of power law index p on the bending response of FG beams

under uniform load, the axial displacement u , transverse deflection w , and axial

stress x , respectively are plotted in Figs. 7-9. Since there are no differences between

the results of shear deformation beam theories, TBT is used only in Figs. 7-9. It can be

seen that increasing the power law index p will reduce the stiffness of the FG beams,

and consequently, leads to an increase in the deflections and axial stress. This is due to

the fact that higher values of power law index p correspond to high portion of metal

in comparison with the ceramic part, thus makes such FG beams more flexible. The

effect of shear deformation on deflection of FG beams is shown in Fig. 10 for various

values of power law index p . In this figure, the deflection ratio is defined as the ratio

of deflection predicted by shear deformation beam theory to that predicted by CBT. It

can be seen that the deflection ratio is greater than unity, as expected. It means that the

inclusion of shear deformation effect leads to an increase in the deflections and more

pronounced for short beams.

7.2. Results for free vibration analysis

Table 3 shows the nondimensional fundamental frequencies  of FG beams for
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different values of power law index p and span-to-depth ratio /L h . The calculated

frequencies are compared with those given by Simsek [23] using various beam theories.

It should be noted that the results reported by Simsek [23] based on various shear

deformation beam models in which the shear strains are approximated in terms of shear

rotations instead of shear components of bending rotation as in this study. An excellent

agreement between the present solutions and results of Simsek [23] is found. The first

three nondimensional frequencies  of FG beams predicted by various proposed beam

models are presented in Table 4 for different values of power law index p and span-

to-depth ratio /L h . It can be seen that all shear deformation beam theories give the

same frequencies, whereas the CBT overestimates them for all cases considered. Effect

of shear deformation on frequency ratio, which is defined as the ratio of frequency

predicted by shear deformation beam theory to that predicted by CBT, is plotted in Fig.

11. The difference between the frequencies of CBT and shear deformation beam

theories is significant for higher modes and for small span-to-depth ratios /L h (see

Table 4 and Fig. 11). This is due to the effects of shear deformation and rotary inertia.

These effects lead to a reduction of the vibration frequencies and the reduction is

amplified at higher vibration modes and for small span-to-depth ratios. It implies that

shear deformation beam models should be employed for a better prediction of the

frequencies instead of CBT which neglects the effects of transverse shear deformation

and rotary inertia. The corresponding three mode shapes are also plotted in Fig. 12 for

homogeneous and FG beams ( 5L h ). Relative measures of the axial and flexural

displacements show that for homogeneous material, vibration modes exhibit double

coupled mode (bending and shear components), whereas, for FG material, the beam

displays one further mode (axial mode). The resulting mode shape is referred to as triply
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axial-flexural coupled mode.

The effect of power law index p on the frequency of FG beams is shown in Fig. 13.

It is observed that an increase in the value of the power law index leads to a reduction of

frequency. The highest frequency values are obtained for full ceramic beams ( 0p  )

while the lowest frequency values are obtained for full metal beams ( p ). This is

due to the fact that an increase in the value of the power law index results in a decrease

in the value of elasticity modulus. In other words, the beam becomes flexible as the

power law index increases, thus decreasing the frequency values.

8. Conclusions

Various higher-order shear deformation beam theories for bending and free vibration

of FG beams are developed. The displacement fields of the proposed beam theories are

chosen based on the assumption of a constant transverse displacement and higher-order

variation of axial displacement through the depth of the beam. Equations of motion are

derived from Hamilton’s principle. Analytical solutions are obtained for a simply

supported beam. Effects of power law index and shear deformation on the bending and

free vibration responses of FG beams are investigated. The following points can be

outlined from the present study:

(1) The proposed beam theories satisfy the stress-free boundary conditions on the top

and bottom surfaces of the beam, and do not require a shear correction factor.

(2) CBT comes out as a special case of the proposed theories. Hence, finite element

modes based on these beam theories will be free from shear locking.

(3) The results of all proposed beam theories are almost identical to each other, and

agree well with the existing solutions.

(4) Increasing the power law index will reduce the stiffness of FG beam, and consequently,
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leads to an increase in the deflections and a reduction of the natural frequencies.

(5) The inclusion of the shear deformation effects leads to an increase in the deflections

and a reduction of the natural frequencies.
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Figure Captions

Fig. 1. Geometry and coordinate of a FG beam

Fig. 2. Shear strain shape function of various beam models

Fig. 3. Variation of volume fraction cV through the depth of a FG beam for various

values of the power law index p

Fig. 4. Variation of nondimensional axial displacement  0,u z across the depth of FG

beams under uniform load ( 2L h )

Fig. 5. Variation of nondimensional axial normal stress  / 2,x L z across the depth of

FG beams under uniform load ( 2L h )

Fig. 6. Variation of nondimensional transverse shear stress  0,xz z across the depth

of FG beams under uniform load ( 2L h )

Fig. 7. Variation of nondimensional axial displacement u with respect to the power

law index p for FG beams under uniform loads

Fig. 8. Variation of nondimensional transverse deflection w with respect to the power

law index p for FG beams under uniform load

Fig. 9. Variation of nondimensional axial normal stress x with respect to the power

law index p for FG beams under uniform load

Fig. 10. Effect of shear deformation and power index p on deflection of FG beams

under uniform loads

Fig. 11. Effect of shear deformation and power index p on frequencies of FG beams

Fig. 12. First three mode shapes of FG beams ( 5L h )

Fig. 13. Variation of nondimensional fundamental frequency  with respect to power

law index p and span-to-depth ratio /L h of FG beams
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Table Captions

Table 1. Shape functions

Table 2. Nondimensional deflections and stresses of FG beams under uniform load

Table 3. Nondimensional fundamental frequency  of FG beams

Table 4. First three nondimensional frequencies  of FG beams
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Fig. 1. Geometry and coordinate of a FG beam
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Fig. 3. Variation of volume fraction cV through the depth of a FG beam for various

values of the power law index p
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Fig. 4. Variation of nondimensional axial displacement  0,u z across the depth of FG

beams under uniform load ( 2L h )
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Fig. 5. Variation of nondimensional axial normal stress  / 2,x L z across the depth of

FG beams under uniform load ( 2L h )
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of FG beams under uniform load ( 2L h )
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law index p for FG beams under uniform load
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Fig. 9. Variation of nondimensional axial normal stress x with respect to the power
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Fig. 13. Variation of nondimensional fundamental frequency  with respect to power
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Table 1. Shape functions

Model ( )f z ( ) 1 /g z df dz 
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Table 2. Nondimensional deflections and stresses of FG beams under uniform load

p Method
/ 5L h  / 20L h 

w u x xz w u x xz

0 Li et al. [22] 3.1657 0.9402 3.8020 0.7500 2.8962 0.2306 15.0130 0.7500
TBT 3.1654 0.9398 3.8020 0.7332 2.8962 0.2306 15.0129 0.7451
SBT 3.1649 0.9409 3.8053 0.7549 2.8962 0.2306 15.0138 0.7686
HBT 3.1654 0.9397 3.8017 0.7312 2.8962 0.2306 15.0129 0.7429
EBT 3.1635 0.9420 3.8083 0.7763 2.8961 0.2306 15.0145 0.7920
CBT 2.8783 0.9211 3.7500 - 2.8783 0.2303 15.0000 -

0.5 Li et al. [22] 4.8292 1.6603 4.9925 0.7676 4.4645 0.4087 19.7005 0.7676
TBT 4.8285 1.6597 4.9924 0.7504 4.4644 0.4087 19.7004 0.7620
SBT 4.8278 1.6613 4.9970 0.7720 4.4644 0.4087 19.7015 0.7855
HBT 4.8285 1.6595 4.9920 0.7484 4.4644 0.4087 19.7003 0.7599
EBT 4.8260 1.6628 5.0012 0.7934 4.4643 0.4088 19.7026 0.8089
CBT 4.4401 1.6331 4.9206 - 4.4401 0.4083 19.6825 -

1 Li et al. [22] 6.2599 2.3045 5.8837 0.7500 5.8049 0.5686 23.2054 0.7500
TBT 6.2594 2.3038 5.8836 0.7332 5.8049 0.5686 23.2053 0.7451
SBT 6.2586 2.3058 5.8892 0.7549 5.8049 0.5686 23.2067 0.7686
HBT 6.2594 2.3036 5.8831 0.7312 5.8049 0.5685 23.2052 0.7429
EBT 6.2563 2.3075 5.8943 0.7763 5.8047 0.5686 23.2080 0.7920
CBT 5.7746 2.2722 5.7959 - 5.7746 0.5680 23.1834 -

2 Li et al. [22] 8.0602 3.1134 6.8812 0.6787 7.4415 0.7691 27.0989 0.6787
TBT 8.0677 3.1130 6.8826 0.6706 7.4421 0.7691 27.0991 0.6824
SBT 8.0683 3.1153 6.8901 0.6933 7.4421 0.7692 27.1010 0.7069
HBT 8.0675 3.1127 6.8819 0.6685 7.4420 0.7691 27.0989 0.6802
EBT 8.0667 3.1174 6.8969 0.7157 7.4420 0.7692 27.1027 0.7315
CBT 7.4003 3.0740 6.7676 - 7.4003 0.7685 27.0704 -

5 Li et al. [22] 9.7802 3.7089 8.1030 0.5790 8.8151 0.9133 31.8112 0.5790
TBT 9.8281 3.7100 8.1106 0.5905 8.8182 0.9134 31.8130 0.6023
SBT 9.8367 3.7140 8.1222 0.6155 8.8188 0.9134 31.8159 0.6292
HBT 9.8271 3.7097 8.1095 0.5883 8.8181 0.9134 31.8127 0.5998
EBT 9.8414 3.7177 8.1329 0.6404 8.8191 0.9135 31.8185 0.6562
CBT 8.7508 3.6496 7.9428 - 8.7508 0.9124 31.7711 -

10 Li et al. [22] 10.8979 3.8860 9.7063 0.6436 9.6879 0.9536 38.1372 0.6436
TBT 10.9381 3.8864 9.7122 0.6467 9.6905 0.9536 38.1385 0.6596
SBT 10.9420 3.8913 9.7238 0.6708 9.6908 0.9537 38.1414 0.6858
HBT 10.9375 3.8859 9.7111 0.6445 9.6905 0.9536 38.1383 0.6572
EBT 10.9404 3.8957 9.7341 0.6944 9.6907 0.9538 38.1440 0.7115
CBT 9.6072 3.8097 9.5228 - 9.6072 0.9524 38.0913 -
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Table 3. Nondimensional fundamental frequency  of FG beams

L/h Theory Method
p

0 0.5 1 2 5 10

5 TBT Simsek [23] 5.1527 4.4111 3.9904 3.6264 3.4012 3.2816
Present 5.1527 4.4107 3.9904 3.6264 3.4012 3.2816

SBT Simsek [23] 5.1531 4.4114 3.9907 3.6263 3.3998 3.2811
Present 5.1531 4.4110 3.9907 3.6263 3.3998 3.2811

HBT Simsek [23] 5.1527 4.4111 3.9904 3.6265 3.4014 3.2817
Present 5.1527 4.4107 3.9904 3.6265 3.4014 3.2817

EBT Simsek [23] 5.1542 4.4122 3.9914 3.6267 3.3991 3.2813
Present 5.1542 4.4118 3.9914 3.6267 3.3991 3.2814

CPT Simsek [23] 5.3953 4.5936 4.1484 3.7793 3.5949 3.4921
Present 5.3953 4.5931 4.1484 3.7793 3.5949 3.4921

20 TBT Simsek [23] 5.4603 4.6516 4.2050 3.8361 3.6485 3.5390
Present 5.4603 4.6511 4.2051 3.8361 3.6485 3.5390

SBT Simsek [23] 5.4604 4.6516 4.2051 3.8361 3.6484 3.5390
Present 5.4603 4.6511 4.2051 3.8361 3.6484 3.5389

HBT Simsek [23] 5.4603 4.6516 4.2050 3.8361 3.6485 3.5390
Present 5.4603 4.6511 4.2051 3.8361 3.6485 3.5390

EBT Simsek [23] 5.4604 4.6517 4.2052 3.8362 3.6483 3.5390
Present 5.4604 4.6512 4.2051 3.8361 3.6483 3.5390

CPT Simsek [23] 5.4777 4.6646 4.2163 3.8472 3.6628 3.5547
Present 5.4777 4.6641 4.2163 3.8472 3.6628 3.5547
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Table 4. First three nondimensional frequencies  of FG beams

L/h Mode Method
p

0 0.5 1 2 5 10

5 1 TBT 5.1527 4.4107 3.9904 3.6264 3.4012 3.2816
SBT 5.1531 4.4110 3.9907 3.6263 3.3998 3.2811
HBT 5.1527 4.4107 3.9904 3.6265 3.4014 3.2817
EBT 5.1542 4.4118 3.9914 3.6267 3.3991 3.2814
CBT 5.3953 4.5931 4.1484 3.7793 3.5949 3.4921

2 TBT 17.8812 15.4588 14.0100 12.6405 11.5431 11.0240
SBT 17.8868 15.4631 14.0138 12.6411 11.5324 11.0216
HBT 17.8810 15.4587 14.0098 12.6407 11.5444 11.0246
EBT 17.8996 15.4728 14.0224 12.6466 11.5281 11.0264
CBT 20.6187 17.5415 15.7982 14.3260 13.5876 13.2376

3 TBT 34.2097 29.8382 27.0979 24.3152 21.7158 20.5561
SBT 34.2344 29.8569 27.1152 24.3237 21.6943 20.5581
HBT 34.2085 29.8373 27.0971 24.3151 21.7187 20.5569
EBT 34.2819 29.8929 27.1480 24.3482 21.6924 20.5815
CBT 43.3483 36.8308 33.0278 29.7458 28.0850 27.4752

20 1 TBT 5.4603 4.6511 4.2051 3.8361 3.6485 3.5390
SBT 5.4603 4.6511 4.2051 3.8361 3.6484 3.5389
HBT 5.4603 4.6511 4.2051 3.8361 3.6485 3.5390
EBT 5.4604 4.6512 4.2051 3.8361 3.6483 3.5390
CBT 5.4777 4.6641 4.2163 3.8472 3.6628 3.5547

2 TBT 21.5732 18.3962 16.6344 15.1619 14.3746 13.9263
SBT 21.5736 18.3965 16.6347 15.1617 14.3728 13.9255
HBT 21.5732 18.3962 16.6344 15.1619 14.3748 13.9264
EBT 21.5748 18.3974 16.6355 15.1621 14.3718 13.9258
CBT 21.8438 18.5987 16.8100 15.3334 14.5959 14.1676

3 TBT 47.5930 40.6526 36.7679 33.4689 31.5780 30.5369
SBT 47.5950 40.6542 36.7692 33.4681 31.5699 30.5337
HBT 47.5930 40.6526 36.7679 33.4691 31.5789 30.5373
EBT 47.6008 40.6586 36.7730 33.4701 31.5655 30.5349
CBT 48.8999 41.6328 37.6173 34.2954 32.6357 31.6883


