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Abstract

A new sinusoidal shear deformation theory is developed for bending, buckling, and

vibration of functionally graded plates. The theory accounts for sinusoidal distribution

of transverse shear stress, and satisfies the free transverse shear stress conditions on the

top and bottom surfaces of the plate without using shear correction factor. Unlike the

conventional sinusoidal shear deformation theory, the proposed sinusoidal shear

deformation theory contains only four unknowns and has strong similarities with

classical plate theory in many aspects such as equations of motion, boundary conditions,

and stress resultant expressions. The material properties of plate are assumed to vary

according to power law distribution of the volume fraction of the constituents.

Equations of motion are derived from the Hamilton’s principle. The closed-form

solutions of simply supported plates are obtained and the results are compared with

those of first-order shear deformation theory and higher-order shear deformation theory.

It can be concluded that the proposed theory is accurate and efficient in predicting the

bending, buckling, and vibration responses of functionally graded plates.

Keywords: Bending; Buckling; Vibration; Functionally graded plate; Plate theory

 Corresponding author. Tel.: + 82 2 2220 4154.
E-mail address: thaihuutai@hanyang.ac.kr (H.T. Thai), t.vo@glyndwr.ac.uk (T.P. Vo).



2

1. Introduction

Functionally graded materials (FGMs) are a class of composites that have continuous

variation of material properties from one surface to another and thus eliminate the stress

concentration found in laminated composites. FGMs are widely used in many structural

applications such as mechanics, civil engineering, aerospace, nuclear, and automotive.

In company with the increase in the application of FGM in engineering structures, many

computational models have been developed for predicting the response of functionally

graded (FG) plates. These models can either be developed using displacement-based

theories (when the principle of virtual work is used) or displacement-stress-based

theories (when Reissner’s mixed variational theorem is used). In general, these theories

can be classified into three main categories: classical plate theory (CPT); first-order

shear deformation theory (FSDT); and higher-order shear deformation theory (HSDT).

The CPT, which neglects the transverse shear deformation effects, provides accurate

results for thin plates [1-4]. For moderately thick plates, it underestimates deflections

and overestimates buckling loads and natural frequencies. The FSDT accounts for the

transverse shear deformation effect, but requires a shear correction factor to satisfy the

free transverse shear stress conditions on the top and bottom surfaces of the plate [5-11].

Although the FSDT provides a sufficiently accurate description of response for thin to

moderately thick plates, it is not convenient to use due to difficulty in determination of

correct value of the shear correction factor. To avoid the use of shear correction factor,

many HSDTs were developed based on the assumption of quadratic, cubic or higher-

order variations of in-plane displacements through the plate thickness, notable among

them are Reddy [12], Karama et al. [13], Zenkour [14-16], Xiao et al. [17], Matsunaga

[18], Pradyumna and Bandyopadhyay [19], Fares et al. [20], Talha and Singh [21-22],



3

Benyoucef et al. [23], Atmane et al. [24], Meiche et al. [25], Mantari et al. [26], and

Xiang et al. [27]. Among the aforementioned HSDTs, the well-known HSDTs with five

unknowns include: the Reddy’s theory [12], the sinusoidal shear deformation theory

[14-16], the hyperbolic shear deformation theory [23-24], the exponential shear

deformation theory [13, 26]. Although the HSDTs with five unknowns are sufficiently

accurate to predict response of thin to thick plate, their equations of motion are much

more complicated than those of FSDT and CPT. Therefore, there is a scope to develop a

HSDT which is simple to use.

This paper aims to develop a simple sinusoidal shear deformation theory for bending,

buckling, and vibration analyses of FG plates. This theory is based on assumption that

the in-plane and transverse displacements consist of bending and shear parts. Unlike the

conventional sinusoidal shear deformation theory [14-16], the proposed sinusoidal shear

deformation theory contains four unknowns and has strong similarities with CPT in

many aspects such as equations of motion, boundary conditions, and stress resultant

expressions. Material properties of FG plate are assumed to vary according to power

law distribution of the volume fraction of the constituents. Equations of motion are

derived from the Hamilton’s principle. The closed-form solutions are obtained for

simply supported plates. Numerical examples are presented to verify the accuracy of the

proposed theory in predicting the bending, buckling, and vibration responses of FG

plates. It should be pointed out that Merdaci et al. [28], Ameur et al. [29], and Tounsi et

al. [30] recently developed a theory that is similar with the present one. However, their

works are limited to only bending problems.

2. Theoretical formulations

2.1. Basic assumptions
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The assumptions of the present theory are as follows:

i. The displacements are small in comparison with the plate thickness and, therefore,

strains involved are infinitesimal.

ii. The transverse normal stress z is negligible in comparison with in-plane stresses

x and y .

iii. The transverse displacement 3u includes two components of bending bw and

shear sw . These components are functions of coordinates x , y , and time t only.

     3 , , , , , , ,b su x y z t w x y t w x y t  (1)

iv. The in-plane displacements 1u and 2u consist of extension, bending, and shear

components.

1 b su u u u   and 2 b su v v v   (2)

- The bending components bu and bv are assumed to be similar to the displacements

given by the classical plate theory. Therefore, the expressions for bu and bv are

b
b

w
u z

x


 


and b

b

w
v z

y


 


(3a)

- The shear components su and sv give rise, in conjunction with sw , to the

sinusoidal variations of shear strains xz , yz and hence to shear stresses xz , yz

through the thickness h of the plate in such a way that shear stresses xz , yz are

zero at the top and bottom surfaces of the plate. Consequently, the expression for su

and sv can be given as

sin s
s

wh z
u z

h x




      
and sin s

s

wh z
v z

h y




      
(3b)

2.2. Kinematics
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Based on the assumptions made in the preceding section, the displacement field can

be obtained using Eqs. (1)-(3) as

   

   

     

1

2

3

, , , , ,

, , , , ,

, , , , , , ,

b s

b s

b s

w w
u x y z t u x y t z f

x x
w w

u x y z t v x y t z f
y y

u x y z t w x y t w x y t

 
  

 
 

  
 

 

(4)

where

sin
h z

f z
h




  (5)

The kinematic relations can be obtained as follows:

0

0

0

,

b s
x x x x s

yzb s yz
y y y y s

xzb s xz
xy xy xy xy

z f g

   
 

   
 

   

      
                       

          
       

(6)

where
2 2

2 2
0

2 2
0

2 2
0

2 2

, , ,

2 2

b s

b s
x x x

b s yzb s
y y y

b s
xy xy xy

b s

w wu
x xx
w wv

y y y

u v w w
y x x y x y

  


  
  

                        
                                          

                    
             

1 cos

s
s

s
xz s

w

y

w

x

df z
g

dz h





 
       
   
  

     
 

(7)

2.3. Constitutive equations

The material properties of FG plate are assumed to vary continuously through the

thickness of the plate in accordance with a power law distribution as

    1

2

p

m c m

z
P z P P P

h
     
 

(8)

where P represents the effective material property such as Young’s modulus E and

mass density  subscripts m and c represent the metallic and ceramic constituents,
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respectively; and p is the volume fraction exponent. The value of p equal to zero

represents a fully ceramic plate, whereas infinite p indicates a fully metallic plate.

Since the effects of the variation of Poisson’s ratio  on the response of FG plates are

very small [31-32], the Poisson’s ratio  is usually assumed to be constant. The linear

constitutive relations of a FG plate can be written as

 
2

(1 )

2
(1 )

2
(1 )

2

1 0 0 0

1 0 0 0

0 0 0 0
1

0 0 0 0

0 0 0 0

x x

y y

xy xy

yz yz

xz xz

E z 





 
 

 


 
 







                        
    
        

(9)

2.4. Equations of motion

Hamilton’s principle is used herein to derive the equations of motion. The principle

can be stated in analytical form as [33]

 
0

0
T

U V K dt     (10)

where U is the variation of strain energy; V is the variation of potential energy;

and K is the variation of kinetic energy.

The variation of strain energy of the plate is calculated by

 
2 2 2 2

2 2 2 2

2 2

2 2

x x y y xy xy yz yz xz xzV

b s b sb s b s
x x x y y yA

b sb s s s
xy xy xy yz xz

U dAdz

w w w wu v
N M M N M M

x x x y y y

w w w wu v
N M M Q Q dA

y x x y x y y x

          

    

    

    

     
           

      
                



 (11)

where N , M , and Q are the stress resultants defined as

     
/ 2

/ 2

, , 1, , , , ,
h

b s
i i i i

h

N M M z f dz i x y xy


  and  
/ 2

/ 2

, ,
h

i i

h

Q g dz i xz yz


  (12)

The variation of potential energy of the applied loads can be expressed as
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0 0 03 3 3 3 3 3
3 2x y xyA A

u u u u u u
V q u dA N N N dA

x x y y x y

  
 

      
           
  (13)

where q and  0 0 0, ,x y xyN N N are transverse and in-plane applied loads, respectively.

The variation of kinetic energy of the plate can be written as

   

   
1 1 2 2 3 3

0

1

1

2

V

b s b sA

b b b b

s s s s

b b b b

K u u u u u u z dAdz

I u u v v w w w w

w w w w
I u u v v

x x y y

w w w w
J u u v v

x x y y

w w w w
I

x x y y

    

  

 
 

 
 

 

  

      

    
        
    

        
    

     




     

       

   
   

   
   

   
2

2

s s s s

b s s b b s s b

w w w w
K

x x y y

w w w w w w w w
J dA

x x x x y y y y

 

   

    
        

        
             

   

       

(14)

where dot-superscript convention indicates the differentiation with respect to the time

variable t ;  z is the mass density; and  0 1 1 2 2 2, , , , ,I I J I J K are mass inertias

defined as

     
/ 2

2 2
0 1 1 2 2 2

/ 2

, , , , , 1, , , , ,
h

h

I I J I J K z f z zf f z dz


  (15)

Substituting the expressions for U , V , and K from Eqs. (11), (13), and (14) into

Eq. (10) and integrating by parts, and collecting the coefficients of u , v , bw , and

sw , the following equations of motion of the plate are obtained

0 1 1: xyx b s
NN w w

u I u I J
x y x x


  
   

   
 

 (16a)

0 1 1: xy y b s
N N w w

v I v I J
x y y y


   

   
   

 
 (16b)
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 

2 22

2 2

2 2
0 1 2 2

: 2
b bb
xy yx

b

b s b s

M MM
w q N

x x y y

u v
I w w I I w J w

x y


 

   
   

  
          



 
   

(16c)

 

2 22

2 2

2 2
0 1 2 2

: 2
s ss
xy y yzx xz

s

b s b s

M M QM Q
w q N

x x y y x y

u v
I w w J J w K w

x y


   

     
     

  
          



 
   

(16d)

where

     2 2 2
0 0 0

2 2
2b s b s b s

x y xy

w w w w w w
N N N N

x y x y

     
  

   
 (17)

The boundary conditions of present theory involve specifying the six following pairs:

or

or

/ or

/ or

or

or

n nn

s ns

b
b nn

s
s nn

b
b n

s
s n

u N

u N

w n M

w n M

w V

w V

 

 
(18)

where
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   2 2 2 2

2 2 2 2

0

,

2 ,

2 , 2

,

n x y s y x

nn x x y y xy x y ns y x x y xy x y

b b b b s s s s
nn x x y y xy x y nn x x y y xy x y

b s
b b b s s sns ns

n x x y y n x x y y

bb
xy bb x

x x

u un vn u un vn

N N n N n N n n N N N n n N n n

M M n M n M n n M M n M n M n n

M M
V Q n Q n V Q n Q n

s s

M wM
Q N

x y

    

      

     

 
     

 
 

  
 

   

   

   

0
1 2 2

0 0
1 2 2

0 0
1 2 2

s b s b s
xy

b b
y xy b s b sb b s

y xy y

ss
xy b s b ss x b s

x xz x xy

s
y xs

y

w w w w w
N I u I J

x y x x

M M w w w w w w
Q N N I v I J

y x x y y y

M w w w wM w w
Q Q N N J u J K

x y x y x x

M M
Q

y

    
   

   

       
      
     

      
       
     

 
 


 


 


 


   

       

0 0
1 2 2

2 2 2 2,

s
y b s b s b s

yz xy y

b b b b s s s s
ns y x x y xy x y ns y x x y xy x y

w w w w w w
Q N N J v J K

x x y y y

M M M n n M n n M M M n n M n n

     
     

    

       

 


(19)

By substituting Eq. (6) into Eq. (9) and the subsequent results into Eq. (12), the stress

resultants are obtained as

 
 
 

   
   

 
 
 

0s

b s b

s s ss s

A B BN

M B D D

B D HM







                       
                  

and    s sQ A     (20)

where

        
1 0

, , , , , 1 0 , , , , ,

0 0 (1 ) / 2

s s s s s sA B B D D H A B B D D H






 
              
  

(21a)

   
/ 2

2 2
2

/ 2

( )
, , , , , 1, , , , ,

1

h
s s s

h

E z
A B B D D H z f z zf f dz




 (21b)

/ 2
2

/ 2

1 0 ( )
,

0 1 2(1 )

h
s s s

h

E z
A A A g dz



        
 (21c)

By substituting Eq. (20) into Eq. (16), the equations of motion can be expressed in

terms of displacements  , , ,b su v w w as



10

2 2 2
2 2

0 1 12 2

1 1

2 2
sb s b sw w w wu u v

A B B I u I J
x y x y x x x x

          
                 

 
 (22a)

2 2 2
2 2

0 1 12 2

1 1

2 2
sb s b sw w w wv v u

A B B I v I J
y x x y y y y y

          
                 

 
 (22b)

 

2 4 4

2 2
0 1 2 2

s
b s

b s b s

u v
B D w D w q N

x y

u v
I w w I I w J w

x y

  
          

  
          



 
   

(22c)

 

2 4 4 2

2 2
0 1 2 2

s s s s
b s s

b s b s

u v
B D w H w A w q N

x y

u v
I w w J J w K w

x y

  
            

  
          



 
   

(22d)

Clearly, when the effect of transverse shear deformation is neglected ( 0sw  ), Eq. (22)

yields the equations of motion of FG plate based on the classical plate theory.

3. Closed-form solution for the simply supported rectangular plate

Consider a simply supported rectangular plate with length a and width b under

transverse load q and in-plane forces in two directions ( 0 0 0
1 2, , 0x cr y cr xyN N N N N    ).

Based on the Navier approach, the following expansions of displacements are chosen to

automatically satisfy the simply supported boundary conditions of plate

 

 

 

 

1 1

1 1

1 1

1 1

, , cos sin

, , sin cos

, , sin sin

, , sin sin

i t
mn

m n

i t
mn

m n

i t
b bmn

m n

i t
s smn

m n

u x y t U e x y

v x y t V e x y

w x y t W e x y

w x y t W e x y









 

 

 

 

 

 

 

 

 

 

 

 

















(23)

where 1i   , /m a  , /n b  ,  , , ,mn mn bmn smnU V W W are coefficients, and



11

 is the frequency of vibration. The transverse load q is also expanded in the double-

Fourier sine series as

 
1 1

, sin sinmn
m n

q x y Q x y 
 

 

 (24)

where

 
0

0
0 0 2

for sinusoidally distributed load
4

, sin sin 16
for uniformly distributed load

a b

mn

q
Q q x y x ydxdy q

ab
mn

 




  


  (25)

Substituting Eq. (23) into Eq. (22), the closed-form solutions can be obtained from

11 12 13 14 11 13 14

12 22 23 24 22 23 242

13 23 33 34 13 23 33 34

14 24 34 44 14 24 34 44

0 0

0 0
mn

mn

bmn mn

smn mn

s s s s m m m U

s s s s m m m V

s s s k s k m m m m W Q

s s s k s k m m m m W Q



        
        

                                      

(26)

where

     
     

     

2 2 2 2
11 12 22

2 2 2 2 2 2
13 14 23

2 22 2 2 2 2 2
24 33 34

22 2 2 2 2 2
44 1 2

11 22 0 13 1 14 1 23 1 24

1 1 1
, ,

2 2 2

, ,

, ,

,

, , , ,

s

s s

s s
cr

s A A s A s A A

s B s B s B

s B s D s D

s H A k N

m m I m I m J m I m J

  
    

        

      

       

   

  
    

        

      

     

         

     
1

2 2 2 2 2 2
33 0 2 34 0 2 44 0 2, ,m I I m I J m I K             

(27)

4. Results and discussion

In this section, various numerical examples are presented and discussed to verify the

accuracy of present theory in predicting the bending, buckling, and vibration responses

of simply supported FG plates. For numerical results, an Al/Al2O3 plate composed of

aluminum (as metal) and alumina (as ceramic) is considered. The Young’s modulus and

density of aluminum are 70mE  GPa and 2702m  kg/m3, respectively, and those of
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alumina are 380cE  GPa and 3800c  kg/m3, respectively. For verification purpose,

the obtained results are compared with those predicted using various plate theories. The

description of various displacement models is given in Table 1. In all examples, a shear

correction factor of 5/6 is used for FSDT and the rotary inertias are included in all

theories. The Poisson’s ratio of the plate is assumed to be constant through the thickness

and equal to 0.3. For convenience, the following nondimensionalizations are used in

presenting the numerical results in graphical and tabular form:

 
3 3

4 2
0 0 0

2 2 2

2 3
0

10
, , , , , , , ,

2 2 2 2 2 2 2 3 12 1

ˆ ˆ0,0, , , , / , /
3

c
x x y y

cr
xy xy c c c c

m

E h a b h a b h h a b h Eh
w w D

q a q a q a

N bh h Na a
N N h E E

q a D E h h

   


       


                   

       
 

(28)

4.1. Bending problem

Example 1: The first example is carried out for square plate subjected to uniformly

distributed load ( 10a h ). Table 2 shows the comparison of nondimensional deflections

and stresses obtained by present theory with those given by Zenkour [16] based on

sinusoidal shear deformation theory (SSDT). It can be seen that the proposed new SSDT

and conventional SSDT [16] give identical results of deflections as well as stresses for

all values of power law index p . It should be noted that the proposed new SSDT

involves four unknowns as against five in case of conventional SSDT [16]. It is

observed that the stresses for a fully ceramic plate are the same as those for a fully metal

plate. This is due to the fact that the plate for these two cases is fully homogenous and

the nondimensional stresses do not depend on the value of the elastic modulus.

Example 2: Table 3 shows the comparison of nondimensional deflections and stresses

of square plate subjected to sinusoidally distributed load ( 10a h ). The obtained results

are compared with those given by Benyoucef et al. [23] based on the hyperbolic shear
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deformation theory (HSDT). It can be seen that an excellent agreement is obtained for

all values of power law index p .

To illustrate the accuracy of present theory for wide range of power law index p and

thickness ratio /a h , the variations of nondimensional deflection w with respect to

power law index p and thickness ratio /a h are illustrated in Fig. 1 and Fig. 2,

respectively, for square plate subjected to sinusoidally distributed load. The obtained

results are compared with those predicted by CPT and TSDT [12]. It can be seen that

the results of present theory and TSDT are almost identical, and the CPT underestimates

the deflection of plate. Since the transverse shear deformation effects are not considered

in CPT, the values of nondimensional deflection w predicted by CPT are independent

of thickness ratio /a h (see Fig. 2).

4.2. Buckling problem

Due to the variation of material properties through the thickness, the stretching-bending

coupling exists in FG plate. This coupling produces deflection and bending moments

when plate is subjected to in-plane compressive loads. Hence, bifurcation-type buckling

will not occur [34-35]. The conditions for bifurcation-type buckling to occur under the

action of in-plane loads are examined by Aydogdu [36] and Naderi and Saidi [37]. It is

observed that the bifurcation-type buckling occurs when the plate is fully clamped. For

movable-edge plate, the bifurcation-type buckling occurs when the in-plane loads are

applied at the neutral surface. Therefore, the buckling analysis is presented herein for

FG plate subjected to in-plane loads acting on the neutral surface.

Example 3: Since the buckling results of FG plate are not available in the literature,

only isotropic plate is used herein for verification. Table 4 shows the nondimensional

buckling loads N̂ of isotropic plate ( 0p  ) subjected to different loading types for
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different values of aspect ratio /a b and thickness ratio /h b . The obtained results are

compared with those of Shufrin and Eisenberger [38] based on FSDT and TSDT. A

good agreement is found for all cases ranging from moderately thick to very thick plates.

The variations of nondimensional critical buckling load N with respect to power law

index p and thickness ratio /a h are illustrated in Fig. 3 and Fig. 4, respectively, for

square plate under biaxial compression. It is observed that the proposed theory and

TSDT give almost identical results, and CPT overestimates the buckling loads of plate

due to ignoring transverse shear deformation effects. The difference between CPT and

shear deformation theories (TSDT and present theory) decreases when the thickness

ratio /a h increases (see Fig. 4).

4.3. Free vibration problem

Example 4: Nondimensional fundamental frequencies ̂ of square plate for different

values of thickness ratio /h a and power law index p are presented in Table 5. The

obtained results are compared with those reported by and Hosseini-Hashemi et al. [11]

based on FSDT and and Hosseini-Hashemi et al. [39] based on TSDT. It is observed that

there is an excellent agreement between the results predicted by present theory, FSDT

[11], and TSDT [39].

Example 5: To verify the higher order modes of vibration, the first four nondimensional

frequencies  are compared in Table 6 for rectangular plate ( 2 )b a with thickness

ratio varied from 5 to 20 and power law index varied from 0 to 10. The nondimensional

frequencies obtained by using proposed theory and TSDT [12] are compared with those

given by Hosseini-Hashemi et al. [11] based on FSDT. It can be seen that the results

predicted by proposed theory and TSDT are almost identical for all modes of vibration

of thin to thick plates. Also, the proposed theory gives more accurate prediction of
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natural frequency compared to FSDT. The maximum difference between present theory

and TSDT is 0.1% at the fourth mode ( / 5a h  , 5p  ), while the maximum difference

between FSDT and TSDT is 5.64% at the fourth mode ( / 5a h  , 10p  ). However, this

difference decreases at lower modes of vibration. For example, the differences between

FSDT and TSDT are 1.26%, 1.78%, 2.44%, and 5.64% at the first, second, third, and

fourth modes ( / 5a h  , 10p  ), respectively.

The variations of nondimensional fundamental frequency  of square plate with

respect to power law index p and thickness ratio /a h are compared in Fig. 5 and

Fig. 6, respectively. It is observed that the nondimensional frequencies  predicted by

present theory and TSDT are almost identical, and the CPT overestimates the frequency

of thick plate.

5. Conclusions

A new sinusoidal shear deformation theory is developed for bending, buckling, and

vibration of FG plates. Unlike the conventional sinusoidal shear deformation theory, the

proposed sinusoidal shear deformation theory contains only four unknowns and has

strong similarities with the CPT in many aspects such as equations of motion, boundary

conditions, and stress resultant expressions. Equations of motion are derived from the

Hamilton’s principle. Closed-form solutions are obtained for simply supported plates.

The accuracy of the proposed theory has been verified for the bending, buckling, and

free vibration analyses of FG plates. All comparison studies show that the deflection,

stress, buckling load, and natural frequency obtained by the proposed theory with four

unknowns are almost identical with those predicted by other shear deformation theories

containing five unknowns. The practical utilities of this theory are: (1) there is no need

to use a shear correction factor; (2) the finite element model based on this theory will be
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free from shear locking since the CPT comes out as a special case of the present theory;

and (3) the theory is simple and time efficient due to involving only four unknowns. In

conclusion, it can be said that the proposed theory is accurate and efficient in predicting

the bending, buckling, and vibration responses of FG plates.
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Figure Captions

Fig. 1. Comparison of the variation of nondimensional deflection w of square plate

under sinusoidally distributed load versus power law index p ( 5a h )

Fig. 2. Comparison of the variation of nondimensional deflection w of square plate

under sinusoidally distributed load versus thickness ratio /a h

Fig. 3. Comparison of the variation of nondimensional critical buckling load N of

square plate under biaxial compression versus power law index p ( 5a h )

Fig. 4. Comparison of the variation of nondimensional critical buckling load N of

square plate under biaxial compression versus thickness ratio /a h

Fig. 5. Comparison of the variation of nondimensional fundamental frequency  of

square plate versus power law index p ( 5a h )

Fig. 6. Comparison of the variation of nondimensional fundamental frequency  of

square plate versus thickness ratio /a h
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Table Captions

Table 1. Displacement models

Table 2. Comparison of nondimensional deflection and stresses of square plate under

uniformly distributed load ( ,m n 100 term series, 10a h )

Table 3. Comparison of nondimensional deflection and stresses of square plate under

sinusoidally distributed load ( 10a h )

Table 4. Comparison of nondimensional critical buckling load N̂ of isotropic plate

under different loading types ( 0p  )

Table 5. Comparison of nondimensional fundamental frequency ̂ of square plate

Table 6. Comparison of the first four nondimensional frequency  of rectangular plate

( 2b a )
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Fig. 1. Comparison of the variation of nondimensional deflection w of square plate

under sinusoidally distributed load versus power law index p ( 5a h )
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Fig. 2. Comparison of the variation of nondimensional deflection w of square plate

under sinusoidally distributed load versus thickness ratio /a h
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Fig. 3. Comparison of the variation of nondimensional critical buckling load N of

square plate under biaxial compression versus power law index p ( 5a h )
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Fig. 4. Comparison of the variation of nondimensional critical buckling load N of

square plate under biaxial compression versus thickness ratio /a h
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Table 1. Displacement models

Model Theory Unknowns
CPT Classical plate theory 3
FSDT First-order shear deformation theory 5
TSDT Third-order shear deformation theory 5
HSDT Hyperbolic shear deformation theory 5
SSDT Sinusoidal shear deformation theory 5
Present New sinusoidal shear deformation theory 4

Table 2. Comparison of nondimensional deflection and stresses of square plate under

uniformly distributed load ( ,m n 100 term series, 10a h )

p Method w x y xy yz xz
Ceramic SSDT [16] 0.4665 2.8932 1.9103 1.2850 0.4429 0.5114

Present 0.4665 2.8932 1.9103 1.2850 0.4429 0.5114

1 SSDT [16] 0.9287 4.4745 2.1962 1.1143 0.5446 0.5114
Present 0.9287 4.4745 2.1692 1.1143 0.5446 0.5114

2 SSDT [16] 1.1940 5.2296 2.0338 0.9907 0.5734 0.4700
Present 1.1940 5.2296 2.0338 0.9907 0.5734 0.4700

3 SSDT [16] 1.3200 5.6108 1.8593 1.0047 0.5629 0.4367
Present 1.3200 5.6108 1.8593 1.0047 0.5629 0.4367

4 SSDT [16] 1.3890 5.8915 1.7197 1.0298 0.5346 0.4204
Present 1.3890 5.8915 1.7197 1.0298 0.5346 0.4204

5 SSDT [16] 1.4356 6.1504 1.6104 1.0451 0.5031 0.4177
Present 1.4356 6.1504 1.6104 1.0451 0.5031 0.4177

6 SSDT [16] 1.4727 6.4043 1.5214 1.0536 0.4755 0.4227
Present 1.4727 6.4043 1.5214 1.0536 0.4755 0.4227

7 SSDT [16] 1.5049 6.6547 1.4467 1.0589 0.4543 0.4310
Present 1.5049 6.6547 1.4467 1.0589 0.4543 0.4310

8 SSDT [16] 1.5343 6.8999 1.3829 1.0628 0.4392 0.4399
Present 1.5343 6.8999 1.3829 1.0628 0.4392 0.4399

9 SSDT [16] 1.5617 7.1383 1.3283 1.0620 0.4291 0.4481
Present 1.5617 7.1383 1.3283 1.0662 0.4291 0.4481

10 SSDT [16] 1.5876 7.3689 1.2820 1.0694 0.4227 0.4552
Present 1.5876 7.3689 1.2820 1.0694 0.4227 0.4552

Metal SSDT [16] 2.5327 2.8932 1.9103 1.2850 0.4429 0.5114
Present 2.5327 2.8932 1.9103 1.2850 0.4429 0.5114
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Table 3. Comparison of nondimensional deflection and stresses of square plate under

sinusoidally distributed load ( 10a h )

p Method w x y xy yz xz
Ceramic HSDT [23] 0.2960 1.9955 1.3121 0.7065 0.2132 0.2462

Present 0.2960 1.9955 1.3121 0.7065 0.2132 0.2462

1 HSDT [23] 0.5889 3.0870 1.4894 0.6110 0.2622 0.2462
Present 0.5889 3.0870 1.4894 0.6110 0.2622 0.2462

2 HSDT [23] 0.7572 3.6094 1.3954 0.5441 0.2763 0.2265
Present 0.7573 3.6094 1.3954 0.5441 0.2763 0.2265

3 HSDT [23] 0.8372 3.8742 1.2748 0.5525 0.2715 0.2107
Present 0.8377 3.8742 1.2748 0.5525 0.2715 0.2107

4 HSDT [23] 0.8810 4.0693 1.1783 0.5667 0.2580 0.2029
Present 0.8819 4.0693 1.1783 0.5667 0.2580 0.2029

5 HSDT [23] 0.9108 4.2488 1.1029 0.5755 0.2429 0.2017
Present 0.9118 4.2488 1.1029 0.5755 0.2429 0.2017

6 HSDT [23] 0.9345 4.4244 1.0417 0.5803 0.2296 0.2041
Present 0.9356 4.4244 1.0417 0.5803 0.2296 0.2041

7 HSDT [23] 0.9552 4.5971 0.9903 0.5834 0.2194 0.2081
Present 0.9562 4.5971 0.9903 0.5834 0.2194 0.2081

8 HSDT [23] 0.9741 4.7661 0.9466 0.5856 0.2121 0.2124
Present 0.9750 4.7661 0.9466 0.5856 0.2121 0.2124

9 HSDT [23] 0.9917 4.9303 0.9092 0.5875 0.2072 0.2164
Present 0.9925 4.9303 0.9092 0.5875 0.2072 0.2164

10 HSDT [23] 1.0083 5.0890 0.8775 0.5894 0.2041 0.2198
Present 1.0089 5.0890 0.8775 0.5894 0.2041 0.2198

Metal HSDT [23] 1.6071 1.9955 1.3121 0.7065 0.2132 0.2462
Present 1.6070 1.9955 1.3121 0.7065 0.2132 0.2462
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Table 4. Comparison of nondimensional critical buckling load N̂ of isotropic plate

under different loading types ( 0p  )

a/b h/b Method
Loading type ( 1 2,  )

(-1,0) (0,-1) (-1,-1)
1 0.1 FSDT [38] 3.7865 3.7865 1.8932

TSDT [38] 3.7866 3.7866 1.8933
Present 3.7869 3.7869 1.8935

0.2 FSDT [38] 3.2637 3.2637 1.6319
TSDT [38] 3.2653 3.2653 1.6327
Present 3.2666 3.2666 1.6333

0.3 FSDT [38] 2.6533 2.6533 1.3266
TSDT [38] 2.6586 2.6586 1.3293
Present 2.6612 2.6612 1.3306

0.4 FSDT [38] 1.9196 1.9196 1.0513
TSDT [38] 1.9550 1.9550 1.0567
Present 1.9651 1.9651 1.0586

1.5 0.1 FSDT [38] 4.0250 2.0048 1.3879
TSDT [38] 4.0253 2.0048 1.3879
Present 4.0258 2.0049 1.3880

0.2 FSDT [38] 3.3048 1.7941 1.2421
TSDT [38] 3.3077 1.7946 1.2424
Present 3.3096 1.7951 1.2427

0.3 FSDT [38] 2.5457 1.5267 1.0570
TSDT [38] 2.5545 1.5285 1.0582
Present 2.5580 1.5295 1.0589

0.4 FSDT [38] 1.9196 1.2632 0.8745
TSDT [38] 1.9421 1.2670 0.8772
Present 1.9473 1.2686 0.8783

2 0.1 FSDT [38] 3.7865 1.5093 1.2074
TSDT [38] 3.7866 1.5093 1.2075
Present 3.7869 1.5094 1.2075

0.2 FSDT [38] 3.2637 1.3694 1.0955
TSDT [38] 3.2654 1.3697 1.0958
Present 3.2666 1.3700 1.0960

0.3 FSDT [38] 2.5726 1.1862 0.9490
TSDT [38] 2.5839 1.1873 0.9498
Present 2.5882 1.1879 0.9503

0.4 FSDT [38] 1.9034 0.9991 0.7992
TSDT [38] 1.9230 1.0015 0.8012
Present 1.9292 1.0025 0.8020
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Table 5. Comparison of nondimensional fundamental frequency ̂ of square plate

a/h Method
Power law index (p)
0 0.5 1 4 10

5 FSDT [11] 0.2112 0.1805 0.1631 0.1397 0.1324
HSDT [39] 0.2113 0.1807 0.1631 0.1378 0.1301
Present 0.2113 0.1807 0.1631 0.1377 0.1300

10 FSDT [11] 0.0577 0.0490 0.0442 0.0382 0.0366
HSDT [39] 0.0577 0.0490 0.0442 0.0381 0.0364
Present 0.0577 0.0490 0.0442 0.0381 0.0364

20 FSDT [11] 0.0148 0.0125 0.0113 0.0098 0.0094
HSDT [39] 0.0148 0.0125 0.0113 0.0098 0.0094
Present 0.0148 0.0125 0.0113 0.0098 0.0094
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Table 6. Comparison of the first four nondimensional frequencies  of rectangular

plate ( 2b a )

a/h
Mode
(m,n)

Method
Power law index (p)
0 0.5 1 2 5 8 10

5 1 (1,1) FSDT [11] 3.4409 2.9322 2.6473 2.4017 2.2528 2.1985 2.1677
TSDT 3.4412 2.9347 2.6475 2.3949 2.2272 2.1697 2.1407
Present 3.4416 2.9350 2.6478 2.3948 2.2260 2.1688 2.1403

2 (1,2) FSDT [11] 5.2802 4.5122 4.0773 3.6953 3.4492 3.3587 3.3094
TSDT 5.2813 4.5180 4.0781 3.6805 3.3938 3.2964 3.2514
Present 5.2822 4.5187 4.0787 3.6804 3.3914 3.2947 3.2506

3 (1,3) FSDT [11] 8.0710 6.9231 6.2636 5.6695 5.2579 5.1045 5.0253
TSDT 8.0749 6.9366 6.2663 5.6390 5.1425 4.9758 4.9055
Present 8.0772 6.9384 6.2678 5.6391 5.1378 4.9727 4.9044

4 (2,1) FSDT [11] 9.7416 8.6926 7.8711 7.1189 6.5749 5.9062 5.7518
TSDT 10.1164 8.7138 7.8762 7.0751 6.4074 6.1846 6.0954
Present 10.1201 8.7167 7.8787 7.0756 6.4010 6.1806 6.0942

10 1 (1,1) FSDT [11] 3.6518 3.0983 2.7937 2.5386 2.3998 2.3504 2.3197
TSDT 3.6518 3.0990 2.7937 2.5364 2.3916 2.3411 2.3110
Present 3.6519 3.0991 2.7937 2.5364 2.3912 2.3408 2.3108

2 (1,2) FSDT [11] 5.7693 4.8997 4.4192 4.0142 3.7881 3.7072 3.6580
TSDT 5.7694 4.9014 4.4192 4.0090 3.7682 3.6846 3.6368
Present 5.7697 4.9016 4.4194 4.0089 3.7673 3.6839 3.6365

3 (1,3) FSDT [11] 9.1876 7.8145 7.0512 6.4015 6.0247 5.8887 5.8086
TSDT 9.1880 7.8189 7.0515 6.3886 5.9765 5.8341 5.7575
Present 9.1887 7.8194 7.0519 6.3885 5.9742 5.8324 5.7566

4 (2,1) FSDT [11] 11.8310 10.0740 9.0928 8.2515 7.7505 7.5688 7.4639
TSDT 11.8315 10.0810 9.0933 8.2309 7.6731 7.4813 7.3821
Present 11.8326 10.0818 9.0940 8.2306 7.6696 7.4787 7.3808

20 1 (1,1) FSDT [11] 3.7123 3.1456 2.8352 2.5777 2.4425 2.3948 2.3642
TSDT 3.7123 3.1458 2.8352 2.5771 2.4403 2.3923 2.3619
Present 3.7123 3.1458 2.8353 2.5771 2.4401 2.3922 2.3618

2 (1,2) FSDT [11] 5.9198 5.0175 4.5228 4.1115 3.8939 3.8170 3.7681
TSDT 5.9199 5.0180 4.5228 4.1100 3.8884 3.8107 3.7622
Present 5.9199 5.0180 4.5228 4.1100 3.8881 3.8105 3.7621

3 (1,3) FSDT [11] 9.5668 8.1121 7.3132 6.6471 6.2903 6.1639 6.0843
TSDT 9.5669 8.1133 7.3132 6.6433 6.2760 6.1476 6.0690
Present 9.5671 8.1135 7.3133 6.6432 6.2753 6.1471 6.0688

4 (2,1) FSDT [11] 12.4560 10.5660 9.5261 8.6572 8.1875 8.0207 7.9166
TSDT 12.4562 10.5677 9.5261 8.6509 8.1636 7.9934 7.8909
Present 12.4565 10.5680 9.5263 8.6508 8.1624 7.9925 7.8905


