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Abstract

A new sinusoidal shear deformation theory is developed for bending, buckling, and
vibration of functionally graded plates. The theory accounts for sinusoidal distribution
of transverse shear stress, and satisfies the free transverse shear stress conditions on the
top and bottom surfaces of the plate without using shear correction factor. Unlike the
conventional sinusoidal shear deformation theory, the proposed sinusoidal shear
deformation theory contains only four unknowns and has strong similarities with
classica plate theory in many aspects such as equations of motion, boundary conditions,
and stress resultant expressions. The material properties of plate are assumed to vary
according to power law distribution of the volume fraction of the constituents.
Equations of motion are derived from the Hamilton’s principle. The closed-form
solutions of simply supported plates are obtained and the results are compared with
those of first-order shear deformation theory and higher-order shear deformation theory.
It can be concluded that the proposed theory is accurate and efficient in predicting the
bending, buckling, and vibration responses of functionally graded plates.
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1. Introduction

Functionally graded materials (FGMs) are a class of composites that have continuous
variation of material properties from one surface to another and thus eliminate the stress
concentration found in laminated composites. FGMs are widely used in many structural
applications such as mechanics, civil engineering, aerospace, nuclear, and automotive.
In company with the increase in the application of FGM in engineering structures, many
computational models have been developed for predicting the response of functionally
graded (FG) plates. These models can either be developed using displacement-based
theories (when the principle of virtual work is used) or displacement-stress-based
theories (when Reissner’s mixed variational theorem is used). In general, these theories
can be classified into three main categories. classical plate theory (CPT); first-order
shear deformation theory (FSDT); and higher-order shear deformation theory (HSDT).

The CPT, which neglects the transverse shear deformation effects, provides accurate
results for thin plates [1-4]. For moderately thick plates, it underestimates deflections
and overestimates buckling loads and natural frequencies. The FSDT accounts for the
transverse shear deformation effect, but requires a shear correction factor to satisfy the
free transverse shear stress conditions on the top and bottom surfaces of the plate [5-11].
Although the FSDT provides a sufficiently accurate description of response for thin to
moderately thick plates, it is not convenient to use due to difficulty in determination of
correct value of the shear correction factor. To avoid the use of shear correction factor,
many HSDTs were developed based on the assumption of quadratic, cubic or higher-
order variations of in-plane displacements through the plate thickness, notable among
them are Reddy [12], Karama et a. [13], Zenkour [14-16], Xiao et a. [17], Matsunaga

[18], Pradyumna and Bandyopadhyay [19], Fares et a. [20], Taha and Singh [21-22],



Benyoucef et a. [23], Atmane et a. [24], Meiche et a. [25], Mantari et a. [26], and
Xiang et al. [27]. Among the aforementioned HSDTSs, the well-known HSDTs with five
unknowns include: the Reddy’s theory [12], the sinusoidal shear deformation theory
[14-16], the hyperbolic shear deformation theory [23-24], the exponential shear
deformation theory [13, 26]. Although the HSDTs with five unknowns are sufficiently
accurate to predict response of thin to thick plate, their equations of motion are much
more complicated than those of FSDT and CPT. Therefore, there is a scope to develop a
HSDT which issimpleto use.

This paper aims to develop a simple sinusoidal shear deformation theory for bending,
buckling, and vibration analyses of FG plates. This theory is based on assumption that
the in-plane and transverse displacements consist of bending and shear parts. Unlike the
conventional sinusoidal shear deformation theory [14-16], the proposed sinusoidal shear
deformation theory contains four unknowns and has strong similarities with CPT in
many aspects such as equations of motion, boundary conditions, and stress resultant
expressions. Material properties of FG plate are assumed to vary according to power
law distribution of the volume fraction of the constituents. Equations of motion are
derived from the Hamilton’s principle. The closed-form solutions are obtained for
simply supported plates. Numerical examples are presented to verify the accuracy of the
proposed theory in predicting the bending, buckling, and vibration responses of FG
plates. It should be pointed out that Merdaci et al. [28], Ameur et al. [29], and Tounsi et
al. [30] recently developed a theory that is similar with the present one. However, their

works are limited to only bending problems.
2. Theoretical formulations

2.1. Basic assumptions



The assumptions of the present theory are as follows:
The displacements are small in comparison with the plate thickness and, therefore,

strains involved are infinitesimal.

. The transverse normal stress s, is negligible in comparison with in-plane stresses

s, ad s, .
The transverse displacement u, includes two components of bending w, and

shear w;. These components are functions of coordinates x, y,andtime t only.

Uy (X, Y, Z,8) =W, (X, Y, t) + W, (X, Y, t) (1)

. The in-plane displacements u, and u, consist of extension, bending, and shear

components.

U =u+uU,+u, and u,=V+V, +V, (2
The bending components u, and v, are assumed to be similar to the displacements
given by the classical plate theory. Therefore, the expressionsfor u, and v, are

U, =—z% and v, :—z% (3a)
X

The shear components u, and v, give rise, in conjunction with w,, to the

sinusoidal variations of shear strains g,,, g,, and henceto shear stresses s ,, s,

through the thickness h of the plate in such away that shear stresses s ,, s, ae

zero at the top and bottom surfaces of the plate. Consequently, the expression for u

and v, canbegivenas

u :—(z—ﬂsinp—hz j% and v, :—(z—ﬂsinE j% (3b)

2.2. Kinematics



Based on the assumptions made in the preceding section, the displacement field can

be obtained using Egs. (1)-(3) as

oW, oW,

1 Y 1t = ’ !t - _b_f_S

w(x Yy, zt) u(xy)zax ™

oW, oW,
u,(xy,zt)=v(xyt)—z—2— f — (4)

Uy (X, Y, Z,8) =W, (X, o t) + W, (X, Y, t)
where
foz-NgnPZ 5)
p h

The kinematic rel ations can be obtained as follows;

eX e)(<) k)l() k; S
_Jeolygdkely flysl 19 =g % (6)
y y y y [? g gs
0 b s Xz Xz
where
ou 0w, 0w,
eO ax k b aXZ k s 8X2 GWS
e)(() — @ k)t() —J _ azwb k); —J _ 62Ws {g;z} — ay
Gy ou ov i oW a4 PR OX
-— _ b _ S
oy 0oX OXoy OX3y
g= 1—i = COS(E]
dz h

2.3. Condtitutive equations

The material properties of FG plate are assumed to vary continuously through the

thickness of the plate in accordance with a power law distribution as

1 z\’

P(z)=P,+(P.—-P,)| =+~ (8)
2 h

where P represents the effective material property such as Young’s modulus E and

massdensity r subscripts m and ¢ represent the metallic and ceramic constituents,



respectively; and p is the volume fraction exponent. The value of p equa to zero
represents a fully ceramic plate, whereas infinite p indicates a fully metallic plate.
Since the effects of the variation of Poisson’s ratio n on the response of FG plates are

very small [31-32], the Poisson’s ratio n isusualy assumed to be constant. The linear

constitutive relations of a FG plate can be written as

s, 1 n O 0 0 )
s, n 1 O 0 0 ,
s,p==Zlo 0 &0 0 o llg) ®
S, 00 0 &M 0 |g,
S« 0O 0 O 0 @ 9%

2.4. Equations of motion
Hamilton’s principle is used herein to derive the equations of motion. The principle

can be stated in analytical form as [33]
T
0= (dU +dV -dK)dt (10)

where dU isthe variation of strain energy; dV is the variation of potential energy;
and dK isthe variation of kinetic energy.

The variation of strain energy of the plate is calculated by
du = jv (s,de, +s de, +s,dg, +s ,dg,, +s ,dg,, ) dAdz

N, - YR +N, Y
ox? ox? Y oy Yooy? Yooy?

2 2
N 8du+6dv 2|\/lbadw 2|vlsadWSJrQ odw, QXZadwS dA
Y OX Y oxoy Y oxoy

2 2 2
I{ odu Mbadw odw, odv Mbadw Ms@dws (1)

+
oy OX
where N, M ,and Q arethe stressresultants defined as

(Ni,Mib,Mf)z j (Lz f)s,dz,(i=xyxy) and Q= J 0s.dz(i = xz,yz) (12)

—hi2 ~h/2

The variation of potential energy of the applied |oads can be expressed as



NO@u odu, +N(y)6u3 odu, 2ny§u odu, dA (13)
OX oy oy oX oy

dv_-j qdu,dA+ j {
where g and (NJ,N?,NS) aretransverse and in-plane applied loads, respectively.

The variation of kinetic energy of the plate can be written as

dK = [ (udu,+u,du, +udu)r (2)dAdz
= [ {1o[ udu+vev+ (v, + Vi )d (g +3ir ) |
00 vy o Odg awbdvj

I
Uoox o ax
~3lu . 0d i 8WS du 8dW GWS v (14)
OX 8x oy 8y
oW, odw, oy, odwy, OV, Od W, aw od Wi
+1, + +K,
OX OX oy oy oX OX 8y oy
3, OViy, Od i N OV, od Wy, N OV, Od Vi N OV, od Wiy, dA
oX OX OX OX oy oy oy oy

where dot-superscript convention indicates the differentiation with respect to the time
variable t;r (z) is the mass density; and (l,,1,,J,,1,,J,,K,) are mass inertias

defined as

h/2

(Ioo 130,15, 0,.Ky) = [ (Lzf,2,7,1%)r (2)0z (15)

-h/2

Substituting the expressionsfor dU , dV,and dK from Egs. (11), (13), and (14) into

Eqg. (10) and integrating by parts, and collecting the coefficients of du, dv, dw,, and

dw, the following equations of motion of the plate are obtained

aN .o .
du: a(;\lxjtﬁ:lo(j—ll%—\]lagvs (16a)
X X X
aN 8N e .
dv: =, -|1%-Jla€;"’ys (16b)
X y



2pnp b 2pp b
_O°M? 28 M, 0°M/ ~

dw, : + + +qg+N
ox’ OXO 2
/ ;}' N (160)
B U ov . y
:Io(wb+ws)+Il(&+a—yj—lzvzwb—\lzvzws
2\ s 0*°MS, O°M3 0 ~
dws:ﬁﬁlvzlirZ . axy+ ay2y+a§"z+ Qyz+q+N
X X X
S (169)
=1y (W, + Vi, )+ J, o - J, V20, — K,V
oX oYy
where
- 0% (W, +w, 0% (W, +w, 0% (W, +w,
R e T We) o O (W W) oo O (Wh W) (17)
OX Yoo oy Y oxoy

The boundary conditions of present theory involve specifying the six following pairs:

u, or N,

U or N

ow,/on or M}

ow,/on or  M; (18)
W, or VP

W, or V°

S n

where



U, =Uun +vn,, U, =—uUn, +vn,
No = N, +NynZ +2N, nn, N =(N, =N, )nn + N, (nf-n})
b b b b s s s s
Mo =MInZ +MonZ +2M2 nn, Me =M :nZ +M:n? +2M;nn,
b s

a'\/Il"]S S S S aMnS
VP =QPn, +Q;’ny +a—S,Vn =Qn +Q5n, + P

b 8Mb . ..
Q=M Moy (oWt W) o OWE W)y Oy O
OX oy OX Yoy OX OX
OM?  oM? o(w, +w, o(w, +w, A i (19)
p=—L+—2 4Ny (%, S)+N;’—( i S)—I1V+I2%+J28WS
oy  oOx OX oy oy oy
s OMg o(w, +w, o(w, +w, i i
;:al\/l_x+ Xy+QXZ+NSM+N%M_J]-U+JZ%+K28\NS
oX oy OX oX OX
oM: oM o(W, +Ww, o(w, +w, K K
Q=—" +—xy+Qyz+ny—( i S)Jer,’—( i S)—Jl\'/'+Jz%+K26WS
oy OX OX oy oy oy

Mp =M} =MZ)nn, + M7 (nf=nf), M2 =(M7=M3)nn, + M (nf-n))
By substituting Eg. (6) into Eq. (9) and the subsequent results into Eq. (12), the stress
resultants are obtained as

(N || TAL 8] [B]] e

el (8] o] [o]fjf} ad (@=[A)g?} @

M) (8] [o] [He]] k)

where
1n 0
((AL[Bl.[B°].[D].[D*][H*])=|n 2 O |(AB,B%D,D*H*) (219
0 0 (1-n)/2
s s s\ _ " 2 2 E(Z)
(A.B,B°,D,D*,H )_hj/Z(J,z,f,z Zf f )1_n2dz (21b)
s | __ 1 0 S s;_h/2 E(Z) 2
[A]{O JA, A __!/2—2(1%)9 dz (21¢)

By substituting Eq. (20) into Eg. (16), the equations of motion can be expressed in

terms of displacements (u,v,w,,w,) as



2 A A2 2 , ..
A CU LN OU TN OV ] gy O _gage Oy gy W5 e
OX 2 oy 2 oxoy oX OX oX
2 A2 2 - "
A(Sy‘2’+12” 2‘2’+1+2n ;;yJ_BVZ% gov? M 1y %—Jlaws
X X
BV? (%+%}— DV*w, —D*V*w, +q+ N
X
— (22c)
:IO(wb+WS)+I1(%+ZU |, V20, — J, V2,
B°V? (%+%} ~D*V*w, — HV*w, + AV?w, +q+ N
X
(22d)

=g (Vi + Vi, )+ Jl(a_qu@J_ J, VA, — K, VA,
oxX oy

Clearly, when the effect of transverse shear deformation is neglected (w, =0), Eq. (22)

yields the equations of motion of FG plate based on the classical plate theory.
3. Closed-form solution for the simply supported rectangular plate

Consider a simply supported rectangular plate with length a and width b under

transverse load ¢ and in-plane forcesin two directions (Ny =g;N,, Ny =g,N.,N¢ =0).

Based on the Navier approach, the following expansions of displacements are chosen to

automatically satisfy the simply supported boundary conditions of plate

0 0

u(xy,t)=>>U,_€e"cosaxsinby

m=1 n=1

0 0

V(X y,t)=> ">V, " sinaxcoshy
m=1 n=1 (23)

o o0

(X Y1) =D > W, € sinaxsinby
m=1 n=1

o0 0

(xy.t)=>> W, e"sinaxsinby

m=1 n=1

where i=+-1, a=np/a, b=mp/b, (U, VW W, W,,) ae coefficients, and

10



w isthe frequency of vibration. Thetransverseload q isaso expanded in the double-

Fourier sine series as

o0 0

=> > Qnsinaxsinby (24)
m=1 n=1
where
4 a0 g, for sinusoidally distributed load
=— x smaxsmb dxdy = 25
Qrm ab J; 4('; 4(xy) Y= 16q02 for uniformly distributed load )
mnp
Substituting Eg. (23) into Eq. (22), the closed-form solutions can be obtained from
S S S S m; 0 m, my, U 0
S S S» S w2 0 m, m;, m, Vim _ 0 (26)
Ss Ss Sptk sy+k My My My my, W, Qum
Se Su Sytk s,+k m, m, my, m, )W Qum

where

s, =Aa’ il N Ab2, S, =1+Tnﬁab S, :1TnAa +Ab?

s,=-Ba(a’ +b ?),su=-Ba(a’+b?),s,=-Bb(a’+b?)

s, =-Bb(a’+b?), %3=D(a2+b2)2, s:,,A:DS(a2+b2)2 27)
sM:HS(a2+b2)2+AS(a2+b2), k=N, (ga’+g,b?)

m,=m,=1, my=-al, m,=-aJ, m,=-bl,m,=-bJ,

My =lo+1,(a*+b?), m,=1,+J,(a’+b?), m, =1,+K,(a’+b?)

4. Results and discussion

In this section, various numerical examples are presented and discussed to verify the
accuracy of present theory in predicting the bending, buckling, and vibration responses
of simply supported FG plates. For numerical results, an Al/Al,O3; plate composed of
aluminum (as metal) and alumina (as ceramic) is considered. The Young’s modulus and

density of aluminum are E_=70GPaand r  =2702kg/m’, respectively, and those of

11



auminaare E,=380GPaand r,=3800kg/m’, respectively. For verification purpose,

the obtained results are compared with those predicted using various plate theories. The
description of various displacement modelsis given in Table 1. In all examples, a shear
correction factor of 5/6 is used for FSDT and the rotary inertias are included in all
theories. The Poisson’s ratio of the plate is assumed to be constant through the thickness
and equal to 0.3. For convenience, the following nondimensionalizations are used in

presenting the numerical resultsin graphical and tabular form:

_ 10ER® (a b) _ h abh)_ h abh Eh®
W= 4 w i 1Sx=_sx v v ’sy=_sy T v 1D=—2
0,2 2'2 ga ‘\2'2'2 ga '\2'2'3 12(1-n?)

_ _h h)y ~ N,b*> - Na° . _
S =—sxy(0,0,——j,N: N = W =wh I’C/EC,W=WFJI‘C/EC

(28)

4.1. Bending problem

Example 1: The first example is carried out for square plate subjected to uniformly
distributed load (a =10h). Table 2 shows the comparison of nondimensional deflections
and stresses obtained by present theory with those given by Zenkour [16] based on
sinusoidal shear deformation theory (SSDT). It can be seen that the proposed new SSDT
and conventional SSDT [16] give identical results of deflections as well as stresses for

all values of power law index p. It should be noted that the proposed new SSDT

involves four unknowns as against five in case of conventiona SSDT [16]. It is
observed that the stresses for afully ceramic plate are the same as those for afully metal
plate. Thisis due to the fact that the plate for these two cases is fully homogenous and
the nondimensional stresses do not depend on the value of the elastic modulus.

Example 2: Table 3 shows the comparison of nondimensional deflections and stresses
of square plate subjected to sinusoidally distributed load (a =10h). The obtained results

are compared with those given by Benyoucef et a. [23] based on the hyperbolic shear

12



deformation theory (HSDT). It can be seen that an excellent agreement is obtained for

all values of power law index p.

To illustrate the accuracy of present theory for wide range of power law index p and

thickness ratio a/h, the variations of nondimensional deflection W with respect to

power law index p and thickness ratio a/h are illustrated in Fig. 1 and Fig. 2,

respectively, for square plate subjected to sinusoidally distributed load. The obtained
results are compared with those predicted by CPT and TSDT [12]. It can be seen that
the results of present theory and TSDT are ailmost identical, and the CPT underestimates
the deflection of plate. Since the transverse shear deformation effects are not considered
in CPT, the values of nondimensional deflection w predicted by CPT are independent
of thicknessratio a/h (seeFig. 2).

4.2. Buckling problem

Due to the variation of material properties through the thickness, the stretching-bending
coupling exists in FG plate. This coupling produces deflection and bending moments
when plate is subjected to in-plane compressive loads. Hence, bifurcation-type buckling
will not occur [34-35]. The conditions for bifurcation-type buckling to occur under the
action of in-plane loads are examined by Aydogdu [36] and Naderi and Saidi [37]. It is
observed that the bifurcation-type buckling occurs when the plate is fully clamped. For
movable-edge plate, the bifurcation-type buckling occurs when the in-plane loads are
applied at the neutral surface. Therefore, the buckling analysis is presented herein for
FG plate subjected to in-plane loads acting on the neutral surface.

Example 3: Since the buckling results of FG plate are not available in the literature,

only isotropic plate is used herein for verification. Table 4 shows the nondimensional

buckling loads N of isotropic plate ( p=0) subjected to different loading types for

13



different values of aspect ratio a/b and thicknessratio h/b. The obtained results are
compared with those of Shufrin and Eisenberger [38] based on FSDT and TSDT. A
good agreement is found for all cases ranging from moderately thick to very thick plates.
The variations of nondimensional critical buckling load N with respect to power law
index p andthicknessratio a/h areillustrated in Fig. 3 and Fig. 4, respectively, for
square plate under biaxial compression. It is observed that the proposed theory and
TSDT give amost identical results, and CPT overestimates the buckling loads of plate
due to ignoring transverse shear deformation effects. The difference between CPT and
shear deformation theories (TSDT and present theory) decreases when the thickness
ratio a/h increases (seeFig. 4).

4.3. Free vibration problem

Example 4. Nondimensional fundamental frequencies W of square plate for different
values of thickness ratio h/a and power law index p are presented in Table 5. The
obtained results are compared with those reported by and Hosseini-Hashemi et al. [11]
based on FSDT and and Hosseini-Hashemi et al. [39] based on TSDT. It is observed that
there is an excellent agreement between the results predicted by present theory, FSDT
[11], and TSDT [39].

Example 5: To verify the higher order modes of vibration, the first four nondimensional
frequencies w are compared in Table 6 for rectangular plate (b=2a) with thickness
ratio varied from 5 to 20 and power law index varied from O to 10. The nondimensional
frequencies obtained by using proposed theory and TSDT [12] are compared with those
given by Hosseini-Hashemi et a. [11] based on FSDT. It can be seen that the results
predicted by proposed theory and TSDT are almost identical for al modes of vibration

of thin to thick plates. Also, the proposed theory gives more accurate prediction of

14



natural frequency compared to FSDT. The maximum difference between present theory
and TSDT is 0.1% at the fourth mode (a/h=5, p=5), while the maximum difference
between FSDT and TSDT is 5.64% at the fourth mode (a/h=5, p=10). However, this
difference decreases at lower modes of vibration. For example, the differences between
FSDT and TSDT are 1.26%, 1.78%, 2.44%, and 5.64% at the first, second, third, and
fourth modes (a/h=5, p=10), respectively.

The variations of nondimensional fundamental frequency W of square plate with

respect to power law index p and thickness ratio a/h are compared in Fig. 5 and

Fig. 6, respectively. It is observed that the nondimensional frequencies W predicted by
present theory and TSDT are ailmost identical, and the CPT overestimates the frequency

of thick plate.
5. Conclusions

A new sinusoidal shear deformation theory is developed for bending, buckling, and
vibration of FG plates. Unlike the conventional sinusoidal shear deformation theory, the
proposed sinusoidal shear deformation theory contains only four unknowns and has
strong similarities with the CPT in many aspects such as equations of motion, boundary
conditions, and stress resultant expressions. Equations of motion are derived from the
Hamilton’s principle. Closed-form solutions are obtained for smply supported plates.
The accuracy of the proposed theory has been verified for the bending, buckling, and
free vibration analyses of FG plates. All comparison studies show that the deflection,
stress, buckling load, and natural frequency obtained by the proposed theory with four
unknowns are almost identical with those predicted by other shear deformation theories
containing five unknowns. The practical utilities of this theory are: (1) there is no need

to use a shear correction factor; (2) the finite element model based on this theory will be

15



free from shear locking since the CPT comes out as a special case of the present theory;

and (3) the theory is simple and time efficient due to involving only four unknowns. In

conclusion, it can be said that the proposed theory is accurate and efficient in predicting

the bending, buckling, and vibration responses of FG plates.
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Figure Captions

Fig. 1. Comparison of the variation of nondimensional deflection w of square plate

under sinusoidally distributed load versus power law index p (a=5h)

Fig. 2. Comparison of the variation of nondimensional deflection W of square plate
under sinusoidally distributed load versus thicknessratio a/h
Fig. 3. Comparison of the variation of nondimensional critical bucklingload N of

square plate under biaxial compression versus power law index p (a=>5h)

Fig. 4. Comparison of the variation of nondimensional critical bucklingload N of
square plate under biaxial compression versus thicknessratio a/h

Fig. 5. Comparison of the variation of nondimensional fundamental frequency w of
square plate versus power law index p (a=5h)

Fig. 6. Comparison of the variation of nondimensional fundamental frequency w of

square plate versusthicknessratio a/h
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Table Captions

Table 1. Displacement models

Table 2. Comparison of nondimensional deflection and stresses of square plate under
uniformly distributed load (m,n =100 term series, a=10h)

Table 3. Comparison of nondimensional deflection and stresses of square plate under
sinusoidally distributed load (a=10h)

Table 4. Comparison of nondimensional critical buckling load N of isotropic plate

under different loading types ( p=0)

Table 5. Comparison of nondimensional fundamental frequency W of square plate
Table 6. Comparison of the first four nondimensional frequency w of rectangular plate

(b=2a)

22



15 1
1.2
09 1
w
06 [
— Present
03 [
O Il Il Il Il J
0 2 4 6 8 10

Fig. 1. Comparison of the variation of nondimensional deflection W of sguare plate

under sinusoidally distributed load versus power law index p (a=5h)

151

""" CPT
- TSDT
12 — Present
p=10
09

W L
06 p=1

03 | k p=0

a/h
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Fig. 3. Comparison of the variation of nondimensional critical buckling load N of

square plate under biaxial compression versus power law index p (a=>5h)
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Fig. 5. Comparison of the variation of nondimensional fundamental frequency w of

square plate versus power law index p (a=>5h)
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Table 1. Displacement models

Model Theory Unknowns
CPT Classicd plate theory 3
FSDT First-order shear deformation theory 5
TSDT Third-order shear deformation theory 5
HSDT Hyperbolic shear deformation theory 5
SSDT Sinusoidal shear deformation theory 5
Present New sinusoidal shear deformation theory 4

Table 2. Comparison of nondimensional deflection and stresses of square plate under

uniformly distributed load (m,n =100 term series, a=10h)

p Method w S, S, Sy Sy S
Ceramic  SSDT[16] 0.4665 2.8932 1.9103 1.2850 04429 05114
Present 0.4665 2.8932 1.9103 1.2850 04429  0.5114
1 SSDT [16] 0.9287 4.4745 2.1962 1.1143 0.5446  0.5114
Present 0.9287 4.4745 2.1692 1.1143 0.5446  0.5114
2 SSDT[16] 1.1940 5.2296 2.0338 0.9907 0.5734  0.4700
Present 1.1940 5.2296 2.0338 0.9907 05734  0.4700
3 SSDT [16] 1.3200 5.6108 1.8593 1.0047 05629  0.4367
Present 1.3200 5.6108 1.8593 1.0047 0.5629  0.4367
4 SSDT [16] 1.3890 5.8915 1.7197 1.0298 0.5346  0.4204
Present 1.3890 5.8915 1.7197 1.0298 05346  0.4204
5 SSDT[16] 1.4356 6.1504 1.6104 1.0451 05031 04177
Present 1.4356 6.1504 1.6104 1.0451 0.5031 04177
6 SSDT[16] 1.4727 6.4043 15214 1.0536 04755  0.4227
Present 1.4727 6.4043 15214 1.0536 04755  0.4227
7 SSDT [16] 1.5049 6.6547 1.4467 1.0589 04543  0.4310
Present 1.5049 6.6547 1.4467 1.0589 04543  0.4310
8 SSDT[16] 1.5343 6.8999 1.3829 1.0628 04392  0.4399
Present 1.5343 6.8999 1.3829 1.0628 04392  0.4399
9 SSDT[16] 1.5617 7.1383 1.3283 1.0620 04291  0.4481
Present 1.5617 7.1383 1.3283 1.0662 04291  0.4481
10 SSDT [16] 1.5876 7.3689 1.2820 1.0694 04227  0.4552
Present 1.5876 7.3689 1.2820 1.0694 04227  0.4552
Metal SSDT [16] 2.5327 2.8932 1.9103 1.2850 04429 05114
Present 2.5327 2.8932 1.9103 1.2850 04429 05114

26



Table 3. Comparison of nondimensional deflection and stresses of square plate under

sinusoidally distributed load (a=10h)

P Method w S, S y S Xy S yz S x
Ceramic HSDT [23] 0.2960 1.9955 13121 0.7065 0.2132 0.2462
Present 0.2960 1.9955 13121 0.7065 0.2132 0.2462
1 HSDT [23] 0.5889 3.0870 1.4894 0.6110 0.2622 0.2462
Present 0.5889 3.0870 1.4894 0.6110 0.2622 0.2462
2 HSDT [23] 0.7572 3.6094 1.3954 0.5441 0.2763 0.2265
Present 0.7573 3.6094 1.3954 0.5441 0.2763 0.2265
3 HSDT [23] 0.8372 3.8742 1.2748 0.5525 0.2715 0.2107
Present 0.8377 3.8742 1.2748 0.5525 0.2715 0.2107
4 HSDT [23] 0.8810 4.0693 1.1783 0.5667 0.2580 0.2029
Present 0.8819 4.0693 1.1783 0.5667 0.2580 0.2029
5 HSDT [23] 0.9108 4.2488 1.1029 0.5755 0.2429 0.2017
Present 0.9118 4.2488 1.1029 0.5755 0.2429 0.2017
6 HSDT [23] 0.9345 4.4244 1.0417 0.5803 0.2296 0.2041
Present 0.9356 4.4244 1.0417 0.5803 0.2296 0.2041
7 HSDT [23] 0.9552 4.5971 0.9903 0.5834 0.2194 0.2081
Present 0.9562 45971 0.9903 0.5834 0.2194 0.2081
8 HSDT [23] 0.9741 4.7661 0.9466 0.5856 0.2121 0.2124
Present 0.9750 4.7661 0.9466 0.5856 0.2121 0.2124
9 HSDT [23] 0.9917 4.9303 0.9092 0.5875 0.2072 0.2164
Present 0.9925 4.9303 0.9092 0.5875 0.2072 0.2164
10 HSDT [23] 1.0083 5.0890 0.8775 0.5894 0.2041 0.2198
Present 1.0089 5.0890 0.8775 0.5894 0.2041 0.2198
Metal HSDT [23] 1.6071 1.9955 13121 0.7065 0.2132 0.2462
Present 1.6070 1.9955 1.3121 0.7065 0.2132 0.2462
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Table 4. Comparison of nondimensiona critical buckling load N of isotropic plate

under different loading types ( p=0)

Loading type (g,,9,)

alb h/b Method
(-1,0) (0-1) (-1,-1)
1 0.1 FSDT [39] 3.7865 3.7865 1.8932
TSDT [3§] 3.7866 3.7866 1.8933
Present 3.7869 3.7869 1.8935
0.2 FSDT [3§] 3.2637 3.2637 1.6319
TSDT [39] 3.2653 3.2653 1.6327
Present 3.2666 3.2666 1.6333
0.3 FSDT [3§] 2.6533 2.6533 1.3266
TSDT [3§] 2.6586 2.6586 1.3293
Present 2.6612 2.6612 1.3306
0.4 FSDT [3§] 1.9196 1.9196 1.0513
TSDT [39] 1.9550 1.9550 1.0567
Present 1.9651 1.9651 1.0586
15 0.1 FSDT [3§] 4.0250 2.0048 1.3879
TSDT [39] 4.0253 2.0048 1.3879
Present 4.0258 2.0049 1.3880
0.2 FSDT [3§] 3.3048 1.7941 1.2421
TSDT [38] 3.3077 1.7946 1.2424
Present 3.3096 1.7951 1.2427
0.3 FSDT [3§] 2.5457 1.5267 1.0570
TSDT [39] 2.5545 1.5285 1.0582
Present 2.5580 1.5295 1.0589
0.4 FSDT [3§] 1.9196 1.2632 0.8745
TSDT [39] 1.9421 1.2670 0.8772
Present 1.9473 1.2686 0.8783
2 0.1 FSDT [39] 3.7865 1.5093 1.2074
TSDT [38] 3.7866 15093 1.2075
Present 3.7869 15094 1.2075
0.2 FSDT [3§] 3.2637 1.3694 1.0955
TSDT [39] 3.2654 1.3697 1.0958
Present 3.2666 1.3700 1.0960
0.3 FSDT [3§] 2.5726 1.1862 0.9490
TSDT [39] 25839 1.1873 0.9498
Present 25882 1.1879 0.9503
0.4 FSDT [3§] 1.9034 0.9991 0.7992
TSDT [39] 1.9230 1.0015 0.8012
Present 1.9292 1.0025 0.8020
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Table 5. Comparison of nondimensional fundamental frequency W of square plate

ah

Method

Power law index (p)

0 0.5 1 4 10
5 FSDT [11] 0.2112 0.1805 0.1631 0.1397 0.1324
HSDT [39] 0.2113 0.1807 0.1631 0.1378 0.1301
Present 0.2113 0.1807 0.1631 0.1377 0.1300
10 FSDT [11] 0.0577 0.0490 0.0442 0.0382 0.0366
HSDT [39] 0.0577 0.0490 0.0442 0.0381 0.0364
Present 0.0577 0.0490 0.0442 0.0381 0.0364
20 FSDT [11] 0.0148 0.0125 0.0113 0.0098 0.0094
HSDT [39] 0.0148 0.0125 0.0113 0.0098 0.0094
Present 0.0148 0.0125 0.0113 0.0098 0.0094
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Table 6. Comparison of the first four nondimensiona frequencies W of rectangular
plate (b= 2a)
Mode Power law index (p)
ah (i Method g 05 1 2 5 8 10
5 1(1,1) FSDT[11] 34409 29322 2.6473 24017 22528 2.1985 2.1677
TSDT 34412 29347 26475 23949 22272 21697 2.1407
Present 34416 2.9350 26478 23948 22260 21688 2.1403
2(1,2) FSDT[11] 52802 45122 40773 3.6953 34492 3.3587 3.3094
TSDT 52813 45180 4.0781 36805 33938 32964 3.2514
Present 52822 4.5187 40787 3.6804 33914 32947 3.2506
3(1,3) FSDT[11] 80710 6.9231 6.2636 5.6695 52579 51045 5.0253
TSDT 8.0749 6.9366 6.2663 56390 51425 4.9758 4.9055
Present 8.0772 6.9384 6.2678 5.6391 51378 4.9727 4.9044
4(2,1) FSDT[11] 9.7416 8.6926 7.8711 7.1189 65749 59062 5.7518
TSDT 10.1164 8.7138 7.8762 7.0751 6.4074 6.1846 6.09%4
Present 10.1201 8.7167 78787 7.0756 6.4010 6.1806 6.0942
10 1(1,1) FSDT[11] 3.6518 3.0983 27937 25386 23998 23504 23197
TSDT 3.6518 3.0990 27937 25364 23916 23411 2.3110
Present 3.6519 3.0991 27937 25364 23912 23408 2.3108
2(1,2) FSDT[11] 57693 4.8997 4.4192 4.0142 3.7881 3.7072 3.6580
TSDT 57694 49014 44192 40090 37682 3.6846 3.6368
Present 57697 49016 44194 40089 37673 3.6839 3.6365
3(1,3) FSDT[11]9.1876 7.8145 7.0512 6.4015 6.0247 5.8887 5.8086
TSDT 9.1830 7.8189 7.0515 6.3886 5.9765 5.8341 5.7575
Present 9.1887 7.8194 7.0519 6.3885 59742 5.8324 5.7566
4(2,1) FSDT[11] 11.8310 10.0740 9.0928 8.2515 7.7505 7.5688 7.4639
TSDT 11.8315 10.0810 9.0933 82309 7.6731 7.4813 7.3821
Present  11.8326 10.0818 9.0940 8.2306 7.6696 7.4787 7.3808
20 1(1,1) FSDT[11] 3.7123 3.1456 2.8352 25777 24425 23948 2.3642
TSDT 3.7123 31458 28352 25771 24403 23923 2.3619
Present 37123 3.1458 28353 25771 24401 23922 2.3618
2(1,2) FSDT[11] 59198 50175 45228 41115 3.8939 3.8170 3.7681
TSDT 59199 5.0180 45228 41100 3.8834 3.8107 3.7622
Present 59199 5.0180 45228 41100 3.8881 38105 3.7621
3(1,3) FSDT[11] 9.5668 8.1121 7.3132 6.6471 6.2903 6.1639 6.0843
TSDT 9.5669 8.1133 7.3132 6.6433 6.2760 6.1476 6.0690
Present 95671 8.1135 7.3133 6.6432 6.2753 6.1471 6.0688
4(2,1) FSDT[11] 12.4560 105660 9.5261 8.6572 81875 8.0207 7.9166
TSDT 12.4562 10.5677 9.5261 8.6509 8.1636 7.9934 7.8909
Present 12.4565 10.5680 9.5263 8.6508 8.1624 7.9925 7.8905
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