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Abstract

A finite element model based on sinusoidal shear deformation theory is developed to study vibration

and buckling analysis of composite beams with arbitrary lay-ups. This theory satisfies the zero traction

boundary conditions on the top and bottom surfaces of beam without using shear correction factors.

Besides, it has strong similarity with Euler-Bernoulli beam theory in some aspects such as governing

equations, boundary conditions, and stress resultant expressions. By using Hamilton’s principle,

governing equations of motion are derived. A displacement-based one-dimensional finite element model

is developed to solve the problem. Numerical results for cross-ply and angle-ply composite beams are

obtained as special cases and are compared with other solutions available in the literature. A variety

of parametric studies are conducted to demonstrate the effect of fiber orientation and modulus ratio

on the natural frequencies, critical buckling loads and corresponding mode shapes of composite beams.

Keywords: Composite beams; sinusoidal shear deformation theory; triply axial-flexural coupled;

load-frequency curve.

1. Introduction

Composite materials are increasingly being used in various engineering applications due to their

attractive properties in strength, stiffness, and lightness. The accurate prediction of stability and

dynamic characteristics is of the fundamental importance in the design of composite structures. Fi-

nite element (FE) models originally developed for one-layered isotropic structures were extended to

laminated composite structures as equivalent single-layer models. These models are known to provide

a sufficiently accurate description of the global response of thin to moderately thick laminates [1]
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and considered in this paper. Thanks to the advantage that no shear correction factors are needed,

the higher-order beam theory (HOBT) is widely used in the vibration analysis of composite beams.

Soldatos and Elishakoff [2] developed this theory for static and dynamic analysis of composite beams.

Chandrashekhara and Bangera [3] studied the free vibration characteristics of composite beams by

using finite element. Marur et al. ([4]-[7]) studied vibration analysis of sandwich and composite beams

using the HOBT through proper constitution of elasticity matrix. Shi and Lam [8] presented a FE

formulation for the free vibration analysis of composite beams. Murthy et al. [9] developed a refined

two-noded beam element with four degree-of-freedom per node for static and dynamic behaviour of

asymmetric composite beams with different boundary conditions. Subramanian [10] formulated two

theories using a two-noded C1 continuous beam FE model with eight degree-of-freedom per node for

dynamic analysis of symmetrical composite beams. Jun et al. ([11]-[13]) introduced the dynamic

stiffness matrix method to solve the free vibration of axially loaded composite beams with arbitrary

lay-ups. In the framework of a sinus models family, Vidal and Polit ([14], [15]) presented a three-

noded multilayered (sandwich and laminated) beam element for static and dynamic analysis. Some

researchers studied vibration and buckling problems in a unified fashion. Khdeir and Reddy ([16],

[17]) utilised the state-space concept to solve the fundamental natural frequencies and critical buck-

ling loads of composite beams for symmetric and anti-symmetric cross-ply lay-ups. Song and Waas

[18] studied the buckling and free vibration of uniform and stepped unidirectionally laminated can-

tilever beams in which a cubic distribution of the displacement field through the beam thickness was

assumed. Karama et.al ([19],[20]) presented bending, buckling and free vibration of composite beams

with a transverse shear stress continuity model. By using the method of power series expansion of

displacement components, Matsunaga [21] analyzed the natural frequencies and critical buckling loads

of cross-ply composite beams. Aydogdu ([22]-[24]) carried out the vibration and buckling analysis of

cross-ply and angle-ply composite beams in which a three degree-of-freedom shear deformable beam

theory was developed based on Ritz method. Analytical solutions based on the global local higher-

order theory for simply-supported boundary condition were derived by Zhen and Wanji [25] to study

vibration and buckling of composite beams. Although there are many references available on free

vibration and buckling analysis of composite beams, most of which deal with cross-ply, angle-ply

composite beams. By using the sinusoidal shear deformation theory, the research on the natural fre-

quencies, critical buckling loads and load-frequency curves as well as corresponding mode shapes of

generally composite beams in a unitary manner is limited.

In this paper, which is extended from previous research [26], vibration and buckling analysis of

composite beams using sinusoidal shear deformation theory is presented. This theory satisfies the
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zero traction boundary conditions on the top and bottom surfaces of the beam without using shear

correction factors. Besides, it has strong similarity with Euler-Bernoulli beam theory in some aspects

such as governing equations, boundary conditions, and stress resultant expressions. By using Hamil-

ton’s principle, governing equations of motion are derived. A displacement-based one-dimensional

finite element model is developed to solve the problem. Numerical results for cross-ply and angle-ply

composite beams are obtained as special cases and are compared with other solutions available in the

literature. A variety of parametric studies are conducted to demonstrate the effect of fiber orientation

and modulus ratio on the natural frequencies, critical buckling loads and corresponding mode shapes

of generally composite beams.

2. Kinematics

Consider a laminated composite beam with length L and rectangular cross section b × h, with b

being the width and h being the height. The x-, y-, and z-axes are taken along the length, width, and

height of the beam, respectively. This composite beam is made of many plies of orthotropic materials

in different orientations with respect to the x-axis. To derive the finite element model of composite

beam, the following assumptions are made for the displacement field:

(a) The axial and transverse displacements consist of bending and shear components in which the

bending components do not contribute toward shear forces and, likewise, the shear components

do not contribute toward bending moments.

(b) The bending component of axial displacement is similar to that given by the Euler-Bernoulli beam

theory.

(c) The shear component of axial displacement gives rise to the higher-order variation of shear strain

and hence to shear stress through the depth of the beam in such a way that shear stress vanishes

on the top and bottom surfaces.

The displacement field of the present study can be obtained by modifying the sinusoidal shear

deformation theory based on Touratier [27] as:

U(x, z, t) = u(x, t)− z
∂wb(x, t)

∂x
+

[

z −
h

π
sin(

πz

h
)
]∂ws(x, t)

∂x
(1a)

W (x, z, t) = wb(x, t) + ws(x, t) (1b)

where u is the axial displacement along the mid-plane of the beam, wb and ws are the bending

and shear components of transverse displacement along the mid-plane of the beam, respectively. The
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non-zero strains are given by:

ϵx =
∂U

∂x
= ϵ◦x + zκbx + fκsx (2a)

γxz =
∂W

∂x
+
∂U

∂z
= (1− f ′)γ◦xz = gγ◦xz (2b)

where

f = z −
h

π
sin(

πz

h
) (3a)

g = 1− f ′ = cos(
πz

h
) (3b)

and ϵ◦x, γ
◦

xz, κ
b
x and κsx are the axial strain, shear strains and curvatures in the beam, respectively

defined as:

ϵ◦x = u′ (4a)

γ◦xz = w′

s (4b)

κbx = −w′′

b (4c)

κsx = −w′′

s (4d)

where differentiation with respect to the x-axis is denoted by primes (′).

3. Variational Formulation

In order to derive the equations of motion, Hamilton’s principle is used:

δ

∫ t2

t1

(K − U − V)dt = 0 (5)

where U ,V and K denote the strain energy, potential energy, and kinetic energy, respectively.

The variation of the strain energy can be stated as:

δU =

∫

v

(σxδϵx + σxzδγxz)dv =

∫ l

0

(Nxδϵ
◦

z +M b
xδκ

b
x +M s

xδκ
s
x +Qxzδγ

◦

xz)dx (6)

where Nx,M
b
x,M

s
x and Qxz are the axial force, bending moments and shear force, respectively,

defined by integrating over the cross-sectional area A as:

Nx =

∫

A

σxdA (7a)

M b
x =

∫

A

σxzdA (7b)

M s
x =

∫

A

σxfdA (7c)
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Qxz =

∫

A

σxzgdA (7d)

The variation of the potential energy of the axial force can be expressed as:

δV = −

∫ l

0

P0

[

δw′

b(w
′

b + w′

s) + δw′

s(w
′

b + w′

s)
]

dx (8)

The variation of the kinetic energy is obtained as:

δK =

∫

v

ρk(U̇δU̇ + Ẇ δẆ )dv

=

∫ l

0

[

δu̇(m0u̇−m1ẇb
′ −mf ẇs

′) + δẇbm0(ẇb + ẇs) + δẇb
′(−m1u̇+m2ẇb

′ +mfzẇs
′)

+ δẇsm0(ẇb + ẇs) + δẇs
′(−mf u̇+mfzẇb

′ +mf2ẇs
′)
]

dx (9)

where the differentiation with respect to the time t is denoted by dot-superscript convention and

ρk is the density of a kth layer and m0,m1,m2,mf ,mfz and mf2 are the inertia coefficients, defined

by:

mf = m1 −
h

π
ms

0 (10a)

mfz = m2 −
h

π
ms

1 (10b)

mf2 = ms
2 (10c)

where

(m0,m1,m2) =

∫

A

ρk(1, z, z
2)dA (11a)

(ms
0,m

s
1,m

s
2) =

∫

A

ρk

[

sin(
πz

h
), z sin(

πz

h
), cos2(

πz

h
)
]

dA (11b)

By substituting Eqs. (6), (8) and (9) into Eq. (5), the following weak statement is obtained:

0 =

∫ t2

t1

∫ l

0

[

δu̇(m0u̇−m1ẇb
′ −mf ẇs

′) + δẇbm0(ẇb + ẇs) + δẇb
′(−m1u̇+m2ẇb

′ +mfzẇs
′)

+ δẇsm0(ẇb + ẇs) + δẇs
′(−mf u̇+mfzẇb

′ +mf2ẇs
′)

+ P0

[

δw′

b(w
′

b + w′

s) + δw′

s(w
′

b + w′

s)
]

−Nxδu
′ +M b

xδw
′′

b +M s
xδw

′′

s −Qxzδw
′

s

]

dxdt (12)

4. Constitutive Equations

The stress-strain relations for the kth lamina are given by:

σx = Q̄11γx (13a)

σxz = Q̄55γxz (13b)
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where Q̄11 and Q̄55 are the elastic stiffnesses transformed to the x direction. More detailed expla-

nation can be found in Ref. [28].

The constitutive equations for bar forces and bar strains are obtained by using Eqs. (2), (7) and

(13):






























Nx

M b
x

M s
x

Qxz































=

















R11 R12 R13 0

R22 R23 0

R33 0

sym. R44















































ϵ◦x

κbx

κsx

γ◦xz































(14)

where Rij are the laminate stiffnesses of general composite beams and given by:

R11 =

∫

y

A11dy (15a)

R12 =

∫

y

B11dy (15b)

R13 =

∫

y

(B11 −
h

π
Es

11)dy (15c)

R22 =

∫

y

D11dy (15d)

R23 =

∫

y

(D11 −
h

π
F s
11)dy (15e)

R33 =

∫

y

[

D11 − 2
h

π
F s
11 + (

h

π
)2Gs

11

]

dy (15f)

R44 =

∫

y

Hs
55dy (15g)

whereAij , Bij andDij matrices are the extensional, coupling and bending stiffness and Es
ij , F

s
ij , G

s
ij , H

s
ij

matrices are the higher-order stiffnesses, respectively, defined by:

(Aij , Bij , Dij) =

∫

z

Q̄ij(1, z, z
2)dz (16a)

(Es
ij , F

s
ij , G

s
ij , H

s
ij) =

∫

z

Q̄ij

[

sin(
πz

h
), z sin(

πz

h
), sin2(

πz

h
), cos2(

πz

h
)
]

dz (16b)

Hs
55 =

∫

z

Q̄55 cos
2(
πz

h
)dz (16c)

5. Governing equations of motion

The equilibrium equations of the present study can be obtained by integrating the derivatives of

the varied quantities by parts and collecting the coefficients of δu, δwb and δws:

N ′

x = m0ü−m1ẅb
′ −mf ẅs

′ (17a)

M b
x

′′

− P0(w
′′

b + w′′

s ) = m0(ẅb + ẅs) +m1ü
′ −m2ẅb

′′ −mfzẅs
′′ (17b)

M s
x
′′ +Q′

xz − P0(w
′′

b + w′′

s ) = m0(ẅb + ẅs) +mf ü
′ −mfzẅb

′′ −mf2ẅs
′′ (17c)

6



The natural boundary conditions are of the form:

δu : Nx (18a)

δwb : M b
x

′

− P0(wb
′ + ws′)−m1ü+m2ẅb

′ +mfzẅs
′ (18b)

δw′

b : M b
x (18c)

δws : M s
x
′ +Qxz − P0(wb

′ + ws′)−mf ü+mfzẅb
′ +mf2ẅs

′ (18d)

δw′

s : M s
x (18e)

By substituting Eqs. (4) and (14) into Eq. (17), the explicit form of the governing equations of

motion can be expressed with respect to the laminate stiffnesses Rij :

R11u
′′ −R12w

′′′

b −R13w
′′′

s = m0ü−m1ẅb
′ −mf ẅs

′ (19a)

R12u
′′′ −R22w

iv
b −R23w

iv
s − P0(w

′′

b + w′′

s ) = m0(ẅb + ẅs) +m1ü
′

− m2ẅb
′′ −mfzẅs

′′ (19b)

R13u
′′′ −R23w

iv
b −R33w

iv
s +R44w

′′

s − P0(w
′′

b + w′′

s ) = m0(ẅb + ẅs) +mf ü
′

− mfzẅb
′′ −mf2ẅs

′′ (19c)

Eq. (19) is the most general form for axial-flexural coupled vibration and buckling of composite

beams, and the dependent variables, u, wb and ws are fully coupled. The resulting coupling is referred

to as triply axial-flexural coupled vibration and buckling.

6. Finite Element Formulation

The present theory for composite beams described in the previous section was implemented via a

displacement based finite element method. The variational statement in Eq. (12) requires that the

bending and shear components of transverse displacement wb and ws be twice differentiable and C1-

continuous, whereas the axial displacement u must be only once differentiable and C0-continuous. The

generalized displacements are expressed over each element as a combination of the linear interpolation

function Ψj for u and Hermite-cubic interpolation function ψj for wb and ws associated with node j

and the nodal values:

u =
2

∑

j=1

ujΨj (20a)

wb =

4
∑

j=1

wbjψj (20b)
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ws =
4

∑

j=1

wsjψj (20c)

Substituting these expressions in Eq. (20) into the corresponding weak statement in Eq. (12), the

finite element model of a typical element can be expressed as the standard eigenvalue problem:

([K]− P0[G]− ω2[M ]){∆} = {0} (21)

where [K], [G] and [M ] are the element stiffness matrix, the element geometric stiffness matrix and

the element mass matrix, respectively. The explicit forms of [K] can be found in Ref. [26] and of [G]

and [M ] are given by:

G22
ij =

∫ l

0

ψ′

iψ
′

jdz (22a)

G23
ij =

∫ l

0

ψ′

iψ
′

jdz (22b)

G33
ij =

∫ l

0

ψ′

iψ
′

jdz (22c)

M11
ij =

∫ l

0

m0ΨiΨjdz (22d)

M12
ij = −

∫ l

0

m1Ψiψ
′

jdz (22e)

M13
ij = −

∫ l

0

mfΨiψ
′

jdz (22f)

M22
ij =

∫ l

0

(m0ψiψj +m2ψ
′

iψ
′

j)dz (22g)

M23
ij =

∫ l

0

(m0ψiψj +mfzψ
′

iψ
′

j)dz (22h)

M33
ij =

∫ l

0

(m0ψiψj +mf2ψ′

iψ
′

j)dz (22i)

All other components are zero. In Eq.(21), {∆} is the eigenvector of nodal displacements correspond-

ing to an eigenvalue:

{∆} = {u wb ws}
T (23)

7. Numerical Examples

For verification purpose, vibration analysis of symmetric cross-ply [0◦/90◦/90◦/0◦] and anti-symmetric

angle-ply [45◦/−45◦/45◦/−45◦] composite beams with various boundary conditions is performed. The

material properties are assumed to be: E1 = 144.9GPa, E2 = 9.65GPa, G12 = G13 = 4.14GPa, G23 =

8



3.45GPa, ν12 = 0.3, ρ = 1389kg/m3. The boundary conditions of beam are presented by C for clamped

edge: u = wb = w′

b = ws = w′

s = 0, S for simply-supported edge: u = wb = ws = 0 and F for free edge.

The first three non-dimensional natural frequencies are tabulated in Table 1 and the non-dimensional

term is defined by: ω =
ωL2

h

√

ρ

E1

. An excellent agreement between the predictions of the present

model and the results of the other models mentioned ([3], [7], [8], [29]) can be observed.

To demonstrate the accuracy and validity of this study further, symmetric cross-ply [0◦/90◦/0◦] and

anti-symmetric cross-ply [0◦/90◦] composite beams with cantilever and simply-supported boundary

conditions are considered. In the following examples, all laminate are of equal thickness and made of

the same orthotropic material, whose properties are:

E1/E2 = open, G12 = G13 = 0.6E2, G23 = 0.5E2, ν12 = 0.25 (24)

For convenience, the following non-dimensional terms are used in presenting the numerical results:

P cr =
PcrL

2

E2bh3
(25a)

ω =
ωL2

h

√

ρ

E2

(25b)

The fundamental natural frequencies and critical buckling loads for different span-to-height (L/h)

ratios are compared with analytical solutions ([16], [17]) and previous results ([9], [22], [23]) in Tables 2

and 3. Material with E1/E2 = 10 and 40 is used. Through the close correlation observed between the

present model and the earlier works, accuracy and adequacy of the present model is again established.

The critical buckling loads increase as modulus ratio increases (Table 3). Effect of L/h ratio on the

critical buckling loads and fundamental natural frequencies is plotted in Figs. 1 and 2. It is clear

that shear effects on a symmetric cross-ply lay-up are more pronounced than an anti-symmetric one

for a given L/h ratio. For a symmetric cross-ply lay-up with simply-supported boundary condition,

the present theory becomes effective in a relatively large region up to the point where span-to-height

ratio reaches value of L/h = 40. Thus, a span-to-height ratio L/h = 10 is chosen to show effect of

the axial force on the fundamental natural frequencies. Load-frequency curves of symmetric and anti-

symmetric cross-ply composite beams with E1/E2 = 10 and 40 are illustrated in Fig. 3. As expected,

the natural frequency diminishes when the axial force increases. It is obvious that the load-frequency

curves decrease rapidly prior to the critical buckling loads and finally, the natural frequencies vanish

at these loads. Four load-frequency curves are observed (Fig. 3). The smallest curve is for an anti-

symmetric cross-ply cantilever beam and the largest one is for a symmetric cross-ply simply-supported

beam. Besides, Fig. 3 also explains the duality between the buckling load and natural frequency.

In order to investigate the effects of fiber orientation on the natural frequencies, critical buckling
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loads and load-frequency curves as well as corresponding mode shapes, a clamped-clamped anti-

symmetric angle-ply [θ/ − θ] composite beam is considered. Unless mentioned otherwise, L/h = 10

and material with E1/E2 = 40 is used for the analysis. The first four natural frequencies and critical

buckling loads with respect to the fiber angle change are shown in Table 4. The uncoupled solution,

which neglects the coupling effects coming from the material anisotropy, are also given. The natural

frequencies and buckling loads decrease monotonically with the increase of the fiber angle. As the fiber

angle increases, the buckling loads decrease more quickly than natural frequencies. The uncoupled

solution might not be accurate. However, since coupling effects are negligible for this lay-up, the

results by uncoupled and coupled solution are identical (Table 4), which implies that the uncoupled

solution is sufficiently accurate for this lay-up. The first, second, third and fourth flexural vibration

mode shapes with the fiber angle θ = 30◦ are illustrated in Fig. 4. The first flexural buckling mode

with various fiber angles θ = 0◦, 30◦ and 60◦ are also given in Fig. 5. It is clear that all the mode

shapes exhibit double coupling (bending and shear components of transverse displacement). The load-

frequency curves of these fiber angles is exhibited in Fig. 6. Characteristic of load-frequency curves

is that the value of the axial force for which the natural frequency vanishes constitutes the buckling

load. Thus, when the fiber angle is equal to 0◦, 30◦ and 60◦, the first flexural buckling occurs at about

P = 37.274, 16.980 and 3.735, respectively.

The next example is the same as before except that in this case, an unsymmetric [0◦/θ] lay-up

is considered. For this lay-up, the coupling stiffnesses R12, R13, R14, R23 and R24 do not vanish. A

comprehensive three dimensional interaction diagram of the fundamental natural frequency, axial force

and fiber angle of two lay-ups [θ/ − θ] and [0◦/θ] is plotted in Fig. 7. It is clear that the presence

of the 0◦ layer in the [0◦/θ] configuration increases the natural frequency and buckling load as well

as load-frequency curve with increasing fiber angle. As seen in Table 5 and Fig. 8, the uncoupled

and coupled solution shows discrepancy indicating the coupling effects become significant as the fiber

angle increases. It can be remarked again in Fig. 8 that the natural frequencies decrease with the

increase of axial forces, and the decrease becomes more quickly when axial forces are close to buckling

loads. The vibration and buckling mode shapes are illustrated in Figs. 9 and 10. Due to strong

coupling effects, triply coupled mode (axial, bending and shear components) can be observed. This

fact explains that the uncoupled solution is no longer valid for unsymmetric composite beams, and

triply axial-flexural coupled vibration and buckling should be considered simultaneously for accurate

analysis of composite beams.

Finally, the effects of modulus ratio (E1/E2) on the first three natural frequencies of a cantilever

composite beam under an axial compressive force and tensile force (P = ±0.5Pcr) are investigated. A

10



symmetric cross-ply [0◦/90◦/0◦] and an anti-symmetric cross-ply [0◦/90◦] lay-ups are considered. It

is observed from Fig. 11 that the natural frequencies increase with increasing orthotropy (E1/E2) for

two lay-ups considered.

8. Conclusions

A theoretical model based sinusoidal shear deformation theory is presented to study vibration and

buckling of composite beams with arbitrary lay-ups. This model is capable of predicting accurately the

natural frequencies, critical buckling loads and corresponding mode shapes for various configurations.

It accounts for the parabolical variation of shear strains through the depth of the beam, and satisfies

the zero traction boundary conditions on the top and bottom surfaces of the beam without using shear

correction factor. To formulate the problem, a two-noded C1 beam element with five degree-of-freedom

per node which accounts for shear effects and all coupling effects coming from the material anisotropy

is developed. All of the possible vibration and buckling modes including the axial and flexural mode

as well as triply axial-flexural coupled mode are included in the analysis. The present model is found

to be appropriate and efficient in analyzing vibration and buckling problem of composite beams.
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Figure 1: Effect of span-to-height ratio on the non-dimensional fundamental natural frequencies of a symmetric and

anti-symmetric cross-ply composite beam with cantilever and simply-supported boundary conditions (E1/E2 = 40).

Figure 2: Effect of span-to-height ratio on the non-dimensional critical buckling loads of a symmetric and anti-symmetric

cross-ply composite beam with cantilever and simply-supported boundary conditions (E1/E2 = 40).

Figure 3: Load-frequency curves of symmetric and anti-symmetric cross-ply composite beams with E1/E2 = 10 and 40

(L/h = 10).

Figure 4: Vibration mode shapes of the axial and flexural components of a clamped-clamped anti-symmetric angle-ply

composite beam with the fiber angle 30◦.

Figure 5: Buckling mode shapes of the axial and flexural components of a clamped-clamped anti-symmetric angle-ply

composite beam with the fiber angles 0◦, 30◦ and 60◦.

Figure 6: Load-frequency curves of a clamped-clamped anti-symmetric angle-ply composite beam with the fiber angles

0◦, 0◦ and 60◦.

Figure 7: Three dimensional interaction diagram between the axial force and fundamental natural frequency of clamped

composite beams with respect to the fiber angle change.

Figure 8: Load-frequency interaction curves of a clamped-clamped un-symmetric composite beam with the fiber angles

30◦ and 60◦.

Figure 9: Vibration mode shapes of the axial and flexural components of a clamped-clamped un-symmetric composite

beam with the fiber angle 60◦.

Figure 10: Buckling mode shapes of the axial and flexural components of a clamped-clamped un-symmetric composite

beam with the fiber angles 30◦ and 60◦.

Figure 11: Variation of the first three natural frequencies with respect to modulus ratio change of a cantilever composite

beam under an axial compressive force P = 0.5Pcr and tensile force P = −0.5Pcr.

Table 1: The first five non-dimensional natural frequencies and buckling loads of composite beams with different boundary

conditions.

Table 2: Effect of span-to-height ratios on the non-dimensional fundamental frequencies of a symmetric and anti-

symmetric cross-ply composite beam with cantilever and simply-supported boundary conditions (E1/E2 = 40).

Table 3: Effect of span-to-height ratios on the non-dimensional critical buckling loads of a symmetric and an anti-

symmetric cross-ply composite beam with cantilever and simply-supported boundary conditions (E1/E2 = 10 and 40).

Table 4: The first four non-dimensional natural frequencies and critical buckling loads of a clamped-clamped anti-

symmetric angle-ply [θ/− θ] composite beam with respect to the fiber angle change.

Table 5: The first four non-dimensional natural frequencies and critical buckling loads of an unsymmetric [0◦/θ] clamped-

clamped composite beam with respect to the fiber angle change.
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CAPTIONS OF TABLES

Table 1: The first three non-dimensional fundamental natural frequencies of composite beams with 

different boundary conditions (L/h=15).

Table 2: Effect of span-to-height ratio on the non-dimensional fundamental natural frequencies of a 

symmetric and anti-symmetric cross-ply composite beam with cantilever and simply-supported 

boundary conditions (E1/E2 = 40).

Table 3: Effect of span-to-height ratio on the non-dimensional critical buckling loads of a 

symmetric and an anti-symmetric cross-ply composite beam with cantilever and simply-supported 

boundary conditions (E1/E2 = 10 and 40).

Table 4: The first four non-dimensional natural frequencies and critical buckling loads of a 

clamped-clamped anti-symmetric angle-ply  /  composite beam with respect to the fiber angle 

change.

Table 5: The first four non-dimensional naturalfrequencies and critical buckling loads of an 

unsymmetric 0 / clamped-clamped composite beam with respect to the fiber angle change.
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Table 1: The first three non-dimensional fundamental natural frequencies of composite beams with 

different boundary conditions (L/h=15).

Lay-ups Boundary conditions Reference 1 2 3

[0
0
/90

0
/

90
0
/0

0
]

CC
Shi and Lam [8] 4.6194 10.4162 17.1724

Present 4.6342 10.9232 17.5753

SS
Shi and Lam [8] 2.4979 8.4364 15.5932

Present 2.4960 8.4815 15.8681

CF

Marur and Kant [7] 0.9214 4.8919 11.4758

Shi and Lam [8] 0.9199 4.9054 11.4886

Present 0.9222 4.9165 11.5999

CS
Shi and Lam [8] 3.5264 9.4736 16.4201

Present 3.6049 9.6424 16.8138

[45
0
/-45

0
/

45
0
/-45

0
]

CC

Chandrashekhara

and Bangera [3]
1.9807 5.2165 9.6912

Chen et al. [29] 1.8446 4.9871 9.5395

Present 1.9921 5.2870 9.6852

SS

Chandrashekhara

and Bangera [3]
0.8278 3.2334 7.0148

Chen et al. [29] 0.7998 3.1638 6.9939

Present 0.9078 3.5257 7.5877

CF

Chandrashekhara

and Bangera [3]
0.2962 1.8156 4.9163

Chen et al. [29] 0.2969 1.7778 4.8953

Present 0.3253 1.9823 5.3270

CS

Chandrashekhara

and Bangera [3]
1.2786 4.0139 8.0261

Present 1.4020 4.3667 8.6507
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Table 2: Effect of span-to-height ratio on the non-dimensional fundamental natural frequencies of a 

symmetric and anti-symmetric cross-ply composite beam with cantilever and simply-supported 

boundary conditions (E1/E2 = 40).

Lay-ups Boundary 

conditions
Reference

L/h

5 10 20

[0
0
/90

0
/0

0
]

CF

Murthy et al. [9] 4.230 5.491 -

Khdeir and Reddy [16] 4.234 5.495 -

Aydogdu [22] 4.233 - 6.070

Present 4.248 5.493 6.063

SS

Murthy et al. [9] 9.207 13.614 -

Khdeir and Reddy [16] 9.208 13.614 -

Aydogdu [22] 9.207 - 16.337

Present 9.294 13.616 16.326

[0
0
/90

0
]

CF

Murthy et al. [9] 2.378 2.541 -

Khdeir and Reddy [16] 2.386 2.544 -

Aydogdu [22] 2.384 - 2.590

Present 2.387 2.543 2.589

SS

Murthy et al. [9] 6.045 6.908 -

Khdeir and Reddy [16] 6.128 6.945 -

Aydogdu [22] 6.144 - 7.218

Present 6.090 6.918 7.207
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Table 3: Effect of span-to-height ratio on the non-dimensional critical buckling loads of a 

symmetric and an anti-symmetric cross-ply composite beam with cantilever and simply-supported 

boundary conditions (E1/E2 = 10 and 40).

Lay-ups

and E1/E2 ratio

Boundary 

conditions
Reference

L/h

5 10 20

E1/E2 = 10

[0
0
/90

0
/0

0
]

CF
Aydogdu [23] 1.704 - 1.979

Present 1.694 1.905 1.966

SS
Aydogdu [23] 4.726 - 7.666

Present 4.710 6.777 7.620

[0
0
/90

0
]

CF
Aydogdu [23] 0.542 - 0.565

Present 0.539 0.557 0.562

SS
Aydogdu [23] 1.919 - 2.241

Present 1.914 2.157 2.228

E1/E2 = 40

[0
0
/90

0
/0

0
]

CF

Khdeir and Reddy [17] 4.708 6.772 -

Aydogdu [23] 4.708 - 7.611

Present 4.704 6.762 7.599

SS

Khdeir and Reddy [17] 8.613 18.832 -

Aydogdu [23] 8.613 - 27.084

Present 8.640 18.817 27.047

[0
0
/90

0
]

CF
Aydogdu [23] 1.236 - 1.349

Present 1.237 1.323 1.347

SS
Aydogdu [23] 3.906 - 5.296

Present 3.935 4.948 5.294
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Table 4: The first four non-dimensional natural frequencies and critical buckling loads of a 

clamped-clamped anti-symmetric angle-ply  /  composite beam with respect to the fiber angle 

change.

Fiber

angle

No coupling With coupling

1z


2z


3z


4z


1z
P 1 2 3 4 cr

P

0
0

20.650 45.002 71.529 103.875 37.274 20.650 45.002 71.529 103.875 37.274

15
0

19.548 43.065 68.319 99.104 33.375 19.548 43.065 68.319 99.104 33.375

30
0

14.153 33.654 54.824 80.924 16.980 14.153 33.654 54.824 80.924 16.980

45
0

8.856 22.667 39.537 47.334 6.423 8.856 22.667 39.537 47.334 6.423

60
0

6.788 17.766 31.945 35.007 3.735 6.788 17.766 31.945 35.007 3.735

75
0

6.241 16.409 29.710 31.966 3.151 6.241 16.409 29.710 31.966 3.151

90
0

6.141 16.155 29.278 31.424 3.050 6.141 16.155 29.278 31.424 3.050
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Table 5: The first four non-dimensional naturalfrequencies and critical buckling loads of an 

unsymmetric 0 / clamped-clamped composite beam with respect to the fiber angle change.

Fiber

angle

No coupling With coupling

1z


2z


3z


4z


1z
P 1 2 3 4 cr

P

0
0

20.650 45.002 71.529 103.875 37.274 20.650 45.002 71.529 103.875 37.274

15
0

20.147 44.107 70.021 101.602 35.479 20.108 44.063 69.971 101.564 35.324

30
0

18.760 41.698 66.168 96.038 30.672 17.490 40.014 64.288 94.332 26.264

45
0

18.175 40.616 64.493 93.671 28.746 14.920 35.808 59.163 88.376 18.713

60
0

17.967 40.156 63.764 92.614 28.089 14.019 34.155 57.099 85.851 16.417

75
0

17.862 39.897 63.347 92.000 27.766 13.786 33.683 56.448 84.989 15.857

90
0

17.827 39.807 63.202 91.786 27.659 13.739 33.578 56.290 84.767 15.747
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CAPTIONS OF FIGURES

Figure 1: Effect of span-to-height ratio on the non-dimensional fundamental natural frequencies of 

symmetric cross-ply [0
0

/90
0
/0

0
]  and anti-symmetric cross-ply [0

0
/90

0
] composite beams with 

cantilever and simply-supported boundary conditions (E1/E2 = 40).

Figure 2: Effect of span-to-height ratio on the non-dimensional critical buckling loads of symmetric 

cross-ply [0
0

/90
0
/0

0
] and anti-symmetric cross-ply [0

0
/90

0
] composite beams with cantilever and 

simply-supported boundary conditions (E1/E2 = 40).

Figure 3: Load-frequency curves of symmetric cross-ply [0
0

/90
0
/0

0
] and anti-symmetric cross-ply 

[0
0

/90
0
]  composite beams with E1/E2 = 10 and 40 (L/h = 10).

Figure 4: Vibration mode shapes of the axial and flexural components of a clamped-clamped anti-

symmetric angle-ply [ / ]  composite beam with the fiber angle 30
0
.

Figure 5: Buckling mode shapes of the axial and flexural components of a clamped-clamped anti-

symmetric angle-ply [ / ]  composite beam with the fiber angles 0, 30
0

and 60
0
.

Figure 6: Load-frequency curves of a clamped-clamped anti-symmetric angle-ply [ / ] 
composite beam with the fiber angles 0, 30

0
and 60

0
.

Figure 7: Three dimensional interaction diagram of the fundamental natural frequency, axial force 

and fiber angle of clamped-clamped composite beams with[ / ]  and [0 / ] lay-ups.

Figure 8: Load-frequency curves of a clamped-clamped unsymmetric [0 / ] composite beam with 

the fiber angles 30
0

and 60
0
.

Figure 9: Vibration mode shapes of the axial and flexural components of a clamped-clamped un-

symmetric [0 / ] composite beam with the fiber angle 60
0
.

Figure 10: Buckling mode shapes of the axial and flexural components of a clamped-clamped un-

symmetric [0 / ] composite beam with the fiber angles 30
0

and 60
0
.

Figure 11: Variation of the first three natural frequencies with respect to modulus ratio change of a 

cantilever composite beam under an axial compressive force P=0.5Pcr and tensile force P=-0.5Pcr
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Figure 1: Effect of span-to-height ratio on the non-dimensional fundamental natural frequencies of 

symmetric cross-ply [0
0

/90
0
/0

0
]  and anti-symmetric cross-ply [0

0
/90

0
] composite beams with 

cantilever and simply-supported boundary conditions (E1/E2 = 40).
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Figure 2: Effect of span-to-height ratio on the non-dimensional critical buckling loads of symmetric 

cross-ply [0
0

/90
0
/0

0
] and anti-symmetric cross-ply [0

0
/90

0
] composite beams with cantilever and 

simply-supported boundary conditions (E1/E2 = 40).
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a. E1/E2 = 10

b. E1/E2 = 40

Figure 3: Load-frequency curves of symmetric cross-ply [0
0

/90
0
/0

0
] and anti-symmetric cross-ply 

[0
0

/90
0
]  composite beams with E1/E2 = 10 and 40 (L/h = 10).
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a. First mode shape  = 14.153.

b. Second mode shape  = 33.654.

c. Third mode shape  = 54.824.
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d. Fourth mode shape 80.924

Figure 4: Vibration mode shapes of the axial and flexural components of a clamped-clamped anti-

symmetric angle-ply [ / ]  composite beam with the fiber angle 30
0
.
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a. Pcr = 37.274 with the fiber angle 0
0
.

b. Pcr = 16.980 with the fiber angle 30
0
.

c. Pcr = 3.735 with the fiber angle 60
0
.

Figure 5: Buckling mode shapes of the axial and flexural components of a clamped-clamped anti-

symmetric angle-ply [ / ]  composite beam with the fiber angles 0, 30
0

and 60
0
.
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Figure 6: Load-frequency curves of a clamped-clamped anti-symmetric angle-ply [ / ] 
composite beam with the fiber angles 0, 30

0
and 60

0
.
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Figure 7: Three dimensional interaction diagram of the fundamental natural frequency, axial force 

and fiber angle of clamped-clamped composite beams with[ / ]  and [0 / ] lay-ups.
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Figure 8: Load-frequency curves of a clamped-clamped unsymmetric [0 / ] composite beam with 

the fiber angles 30
0

and 60
0
.
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a. First mode shape  = 14.019.

b. Second mode shape  = 34.155.

c. Third mode shape  = 57.099.
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d. Fourth mode shape 85.851

Figure 9: Vibration mode shapes of the axial and flexural components of a clamped-clamped un-

symmetric [0 / ] composite beam with the fiber angle 60
0
.
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a. Pcr = 26.264 with the fiber angle 30
0
.

b. Pcr = 16.417 with the fiber angle 60
0
.

Figure 10: Buckling mode shapes of the axial and flexural components of a clamped-clamped un-

symmetric [0 / ] composite beam with the fiber angles 30
0

and 60
0
.
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a. Symmetric cross-ply lay-up

b. Anti-symmetric cross-ply lay-up

Figure 11: Variation of the first three natural frequencies with respect to modulus ratio change of a 

cantilever composite beam under an axial compressive force P=0.5Pcr and tensile force P=-0.5Pcr
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