236 research outputs found

    Higher education and teaching of Geography in Spain today

    Full text link
    [EN] The present work tries is a reflection about the teaching activity in the Spanish university from the authorÂŽs perspective provided from a long educational and research career. This dissertation focuses on the teaching tasks and knowledge transmission in relation to its applicability in territorial analyzes. This scope define the basic task of Geography at present. Somehow it is an introspective nature review though based on the experience that provides more than thirty years of teaching geography in the Spanish university. In order to do so, warning is made about the possible abandonment of teaching as the main task towards a better and more qualitatively considered activities such as scientific research. Accepted this fact, the author asks herself about the geographical teaching contens in the present technological age, and more specifically what can and should be the future role of geography as a transversal discipline in the universe of scientific knowledge. The conclusions indicate that it is necessary, first of all, to reform teachers’ thinking and then to enunciate a series of recommendations in order to re-qualify the teaching of geography in such a way that it can be place once again at the forefront of the general scientist panorama.[ES] El presente trabajo trata de ser, en lĂ­neas generales, una reflexiĂłn desde la perspectiva que proporciona una dilatada carrera docente e investigadora, acerca de la enseñanza en la universidad española. Esta reflexiĂłn se centra en concreto, sobre las tareas docentes y de transmisiĂłn de conocimientos para su aplicabilidad en los anĂĄlisis territoriales, hechos que definen bĂĄsicamente el quehacer de la geografĂ­a en los momentos actuales. Se trata, en cierto modo de una revisiĂłn de naturaleza introspectiva, aunque basada en la experiencia que proporciona mĂĄs de treinta años de docencia de la geografĂ­a en la universidad española. Para ello se alerta acerca de un posible abandono de la docencia como tarea principal frente a otras mejor y mĂĄs cualitativamente consideradas, como es la investigaciĂłn cientĂ­fica. Aceptado el hecho, la autora se interroga sobre quĂ© enseñar en la era tecnolĂłgica, y mĂĄs en concreto cual puede y debe ser el futuro papel de la geografĂ­a como disciplina transversal en el universo del conocimiento cientĂ­fico. Las conclusiones nos indican que es necesario, en primer lugar reformar el pensamiento de los docentes para, a continuaciĂłn, enunciar una serie de recomendaciones al objeto de recualificar la docencia de la geografĂ­a de manera que pueda situarse nuevamente en un lugar de vanguardia dentro el panorama cientĂ­fico general.Almoguera Sallent, P. (2018). Enseñanza universitaria y docencia de la geografĂ­a en la España actual. 51-68. doi:10.4995/redu.2018.6072SWORD516

    Seed-specific transcription factor HSFA9 links embryogenesis and photomorphogenesis

    Get PDF
    Poster presentado en la XIII Reunión de Biología Molecular de Plantas. Oviedo 22-24 de junio de 2016 Posler 14/ $IV P14HSFA9, a seed-specific factor, enhances the expression of light receptors and genes required for chlorophyll biosynthesis before germinating seeds are illuminated. HSFA9 subsequently augments phytochrome-mediated responses and stimulates seedling greening.This work has been funded by FEDER (European Regional Development Fund) and by “Secretaría de Estado de Investigación, Desarrollo e Innovación” (projects BIO2011-23440 and BIO2014-52303-R). Additional funds were obtained from “Junta de Andalucía” (Group BIO148).Peer reviewe

    Seed-specific transcription factor HSFA9 links late embryogenesis and early photomorphogenesis

    Get PDF
    HSFA9 is a seed-specific transcription factor that in sunflower (Helianthus annuus) is involved in desiccation tolerance and longevity. Here we show that the constitutive overexpression of HSFA9 in tobacco (Nicotiana tabacum) seedlings attenuated hypocotyl growth under darkness and accelerated the initial photosynthetic development. Plants overexpressing HSFA9 increased accumulation of carotenoids, chlorophyllide, and chlorophyll, and displayed earlier unfolding of the cotyledons. HSFA9 enhanced phytochrome-dependent light responses, as shown by an intensified hypocotyl length reduction after treatments with continuous far-red or red light. This observation indicated the involvement of at least two phytochromes: PHYA and PHYB. Reduced hypocotyl length under darkness did not depend on phytochrome photo-activation; this was inferred from the lack of effect observed using far-red light pulses applied before the dark treatment. HSFA9 increased the expression of genes that activate photomorphogenesis, including PHYA, PHYB, and HY5. HSFA9 might directly upregulate PHYA and indirectly affect PHYB transcription, as suggested by transient expression assays. Converse effects on gene expression, greening, and cotyledon unfolding were observed using a dominant-negative form of HSFA9, which was overexpressed under a seed-specific promoter. This work uncovers a novel transcriptional link, through HSFA9, between seed maturation and early photomorphogenesis. In all, our data suggest that HSFA9 enhances photomorphogenesis via early transcriptional effects that start in seeds under darkness

    Copy number variation analysis in the context of electronic medical records and large-scale genomics consortium efforts

    Get PDF
    The goal of this paper is to review recent research on copy number variations (CNVs) and their association with complex and rare diseases. In the latter part of this paper, we focus on how large biorepositories such as the electronic medical record and genomics (eMERGE) consortium may be best leveraged to systematically mine for potentially pathogenic CNVs, and we end with a discussion of how such variants might be reported back for inclusion in electronic medical records as part of medical history

    Abiotic Stress‐Related Expressed Sequence Tags from the Diploid Strawberry Fragaria vesca

    Full text link
    Strawberry ( spp.) is a eudicotyledonous plant that belongs to the Rosaceae family, which includes other agronomically important plants such as raspberry ( L.) and several tree-fruit species. Despite the vital role played by cultivated strawberry in agriculture, few stress-related gene expression characterizations of this crop are available. To increase the diversity of available transcriptome sequence, we produced 41,430 L. expressed sequence tags (ESTs) from plants growing under water-, temperature-, and osmotic-stress conditions as well as a combination of heat and osmotic stresses that is often found in irrigated fields. Clustering and assembling of the ESTs resulted in a total of 11,836 contigs and singletons that were annotated using Gene Ontology (GO) terms. Furthermore, over 1200 sequences with no match to available Rosaceae ESTs were found, including six that were assigned the “response to stress” GO category. Analysis of EST frequency provided an estimate of steady state transcript levels, with 91 sequences exhibiting at least a 20-fold difference between treatments. This EST collection represents a useful resource to advance our understanding of the abiotic stress-response mechanisms in strawberry. The sequence information may be translated to valuable tree crops in the Rosaceae family, where whole-plant treatments are not as simple or practical

    Characterization of Two Soybean (Glycine max L.) LEA IV Proteins by Circular Dichroism and Fourier Transform Infrared Spectrometry

    Get PDF
    Late embryogenesis-abundant (LEA) proteins, accumulating to a high level during the late stages of seed development, may play a role as osmoprotectants. However, the functions and mechanisms of LEA proteins remained to be elucidated. Five major groups of LEA proteins have been described. In the present study, we report on the characterization of two members of soybean LEA IV proteins, basic GmPM1 and acidic GmPM28, by circular dichroism and Fourier transform infrared spectroscopy. The spectra of both proteins revealed limited defined secondary structures in the fully hydrated state. Thus, the soybean LEA IV proteins are members of ‘natively unfolded proteins’. GmPM1 or GmPM28 proteins showed a conformational change under hydrophobic or dry conditions. After fast or slow drying, the two proteins showed slightly increased proportions of defined secondary structures (α-helix and ÎČ-sheet), from 30 to 49% and from 34 to 42% for GmPM1 and GmPm28, respectively. In the dehydrated state, GmPM1 and GmPM28 interact with non-reducing sugars to improve the transition temperature of cellular glass, with poly-l-lysine to prevent dehydration-induced aggregation and with phospholipids to maintain the liquid crystal phase over a wide temperature range. Our work suggests that soybean LEA IV proteins are functional in the dry state. They are one of the important components in cellular glasses and may stabilize desiccation-sensitive proteins and plasma membranes during dehydration

    Epidermal growth factor induces HCCR expression via PI3K/Akt/mTOR signaling in PANC-1 pancreatic cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human cervical cancer oncoprotein 1 (HCCR-1), reported as a negative regulator of p53, is over-expressed in a variety of human cancers. However, it is yet unknown whether HCCR-1 plays any role in pancreatic cancer development. The aim of this study was to investigate the effect of epidermal growth factor on the expression of HCCR in pancreatic cancer cells, and to explore if PI3K/Akt/mTOR signaling pathway mediated this expression.</p> <p>Methods</p> <p>A polyclonal antibody against HCCR protein was raised by immunizing Balb/c mice with the purified recombinant protein pMBPc-HCCR. Tissue samples were constructed on a tissue chip, and the expression of HCCR was investigated by immunohistochemistry assay and Western blotting. Pancreatic cell line, PANC-1 cells were stably transfected with plasmids containing sense-HCCR-1 fragment and HCCR siRNA fragment. MTT and transwell assay were used to investigate the proliferation and invasion of stable tansfectants. The specific inhibitor of PI3K and mTOR was used to see if PI3K/mTOR signal transduction was involved in the induction of HCCR gene expression. A Luciferase assay was used to see if Akt can enhance the HCCR promoter activity.</p> <p>Results</p> <p>HCCR was up-regulated in pancreatic tumor tissues (mean Allred score 4.51 ± 1.549 <it>vs</it>. 2.87 ± 2.193, P < 0.01), especially with high expression in poorly differentiated pancreatic cancer. The growth of cells decreased in HCCR-1 siRNA transfected cells compared with vector transfectants. The number of invasion cells was significantly lower in HCCR-1 siRNA transfected cells (24.4 ± 9.9) than that in vector transfectants (49.1 ± 15.4). Treatment of PANC-1 cells with epidermal growth factor increased HCCR protein level in a dose- and time-dependent manner. However, application of LY294002 and rapamycin caused a dramatic reduction of epidermal growth factor-induced HCCR expression. Over-expression of exogenous constitutively active Akt increased the HCCR promoter activity; in contrast, dominant negative Akt decreased the promoter activity.</p> <p>Conclusions</p> <p>EGF-induced HCCR-1 over-expression is mediated by PI3K/AKT/mTOR signaling which plays a pivotal role in pancreatic tumor progression, suggesting that HCCR-1 could be a potential target for cancer therapeutics.</p

    Transcriptome Profiling of Citrus Fruit Response to Huanglongbing Disease

    Get PDF
    Huanglongbing (HLB) or “citrus greening” is the most destructive citrus disease worldwide. In this work, we studied host responses of citrus to infection with Candidatus Liberibacter asiaticus (CaLas) using next-generation sequencing technologies. A deep mRNA profile was obtained from peel of healthy and HLB-affected fruit. It was followed by pathway and protein-protein network analysis and quantitative real time PCR analysis of highly regulated genes. We identified differentially regulated pathways and constructed networks that provide a deep insight into the metabolism of affected fruit. Data mining revealed that HLB enhanced transcription of genes involved in the light reactions of photosynthesis and in ATP synthesis. Activation of protein degradation and misfolding processes were observed at the transcriptomic level. Transcripts for heat shock proteins were down-regulated at all disease stages, resulting in further protein misfolding. HLB strongly affected pathways involved in source-sink communication, including sucrose and starch metabolism and hormone synthesis and signaling. Transcription of several genes involved in the synthesis and signal transduction of cytokinins and gibberellins was repressed while that of genes involved in ethylene pathways was induced. CaLas infection triggered a response via both the salicylic acid and jasmonic acid pathways and increased the transcript abundance of several members of the WRKY family of transcription factors. Findings focused on the fruit provide valuable insight to understanding the mechanisms of the HLB-induced fruit disorder and eventually developing methods based on small molecule applications to mitigate its devastating effects on fruit production
    • 

    corecore