1,746 research outputs found
On the Equivalence Between Type I Liouville Dynamical Systems in the Plane and the Sphere
Producción CientíficaSeparable Hamiltonian systems either in sphero-conical coordinates on an S2 sphere or in elliptic coordinates on a R2 plane are described in a unified way. A back and forth route connecting these Liouville Type I separable systems is unveiled. It is shown how the gnomonic projection and its inverse map allow us to pass from a Liouville Type I separable system with a spherical configuration space
to its Liouville Type I partners where the configuration space is a plane and back. Several selected spherical separable systems and their planar cousins are discussed in a classical context
Projective dynamics and classical gravitation
Given a real vector space V of finite dimension, together with a particular
homogeneous field of bivectors that we call a "field of projective forces", we
define a law of dynamics such that the position of the particle is a "ray" i.e.
a half-line drawn from the origin of V. The impulsion is a bivector whose
support is a 2-plane containing the ray. Throwing the particle with a given
initial impulsion defines a projective trajectory. It is a curve in the space
of rays S(V), together with an impulsion attached to each ray. In the simplest
example where the force is identically zero, the curve is a straight line and
the impulsion a constant bivector. A striking feature of projective dynamics
appears: the trajectories are not parameterized.
Among the projective force fields corresponding to a central force, the one
defining the Kepler problem is simpler than those corresponding to other
homogeneities. Here the thrown ray describes a quadratic cone whose section by
a hyperplane corresponds to a Keplerian conic. An original point of view on the
hidden symmetries of the Kepler problem emerges, and clarifies some remarks due
to Halphen and Appell. We also get the unexpected conclusion that there exists
a notion of divergence-free field of projective forces if and only if dim V=4.
No metric is involved in the axioms of projective dynamics.Comment: 20 pages, 4 figure
Freezing-induced self-assembly of amphiphilic molecules
The self-assembly of amphiphilic molecules usually takes place in a liquid
phase, near room temperature. Here, using small angle X-ray scattering (SAXS)
experiments performed in real time, we show that freezing of aqueous solutions
of copolymer amphiphilic molecules can induce self-assembly below 0{\deg}C.Comment: 10 pages, 3 figure
Projective dynamics and first integrals
We present the theory of tensors with Young tableau symmetry as an efficient
computational tool in dealing with the polynomial first integrals of a natural
system in classical mechanics. We relate a special kind of such first
integrals, already studied by Lundmark, to Beltrami's theorem about
projectively flat Riemannian manifolds. We set the ground for a new and simple
theory of the integrable systems having only quadratic first integrals. This
theory begins with two centered quadrics related by central projection, each
quadric being a model of a space of constant curvature. Finally, we present an
extension of these models to the case of degenerate quadratic forms.Comment: 39 pages, 2 figure
Mise en évidence, sur la bordure ouest du craton du Congo, de fossés d'effondrement d'age Protérozoïque supérieur, masqués par les formations phanérozoïques de la cuvette du Zaïre
Kustaanheimo-Stiefel Regularization and the Quadrupolar Conjugacy
In this note, we present the Kustaanheimo-Stiefel regularization in a
symplectic and quaternionic fashion. The bilinear relation is associated with
the moment map of the - action of the Kustaanheimo-Stiefel
transformation, which yields a concise proof of the symplecticity of the
Kustaanheimo-Stiefel transformation symplectically reduced by this circle
action. The relation between the Kustaanheimo-Stiefel regularization and the
Levi-Civita regularization is established via the investigation of the
Levi-Civita planes. A set of Darboux coordinates (which we call
Chenciner-F\'ejoz coordinates) is generalized from the planar case to the
spatial case. Finally, we obtain a conjugacy relation between the integrable
approximating dynamics of the lunar spatial three-body problem and its
regularized counterpart, similar to the conjugacy relation between the extended
averaged system and the averaged regularized system in the planar case.Comment: 19 pages, corrected versio
Pauli graphs when the Hilbert space dimension contains a square: why the Dedekind psi function ?
We study the commutation relations within the Pauli groups built on all
decompositions of a given Hilbert space dimension , containing a square,
into its factors. Illustrative low dimensional examples are the quartit ()
and two-qubit () systems, the octit (), qubit/quartit () and three-qubit () systems, and so on. In the single qudit case,
e.g. , one defines a bijection between the maximal
commuting sets [with the sum of divisors of ] of Pauli
observables and the maximal submodules of the modular ring ,
that arrange into the projective line and a independent set
of size [with the Dedekind psi function]. In the
multiple qudit case, e.g. , the Pauli graphs rely on
symplectic polar spaces such as the generalized quadrangles GQ(2,2) (if
) and GQ(3,3) (if ). More precisely, in dimension ( a
prime) of the Hilbert space, the observables of the Pauli group (modulo the
center) are seen as the elements of the -dimensional vector space over the
field . In this space, one makes use of the commutator to define
a symplectic polar space of cardinality , that
encodes the maximal commuting sets of the Pauli group by its totally isotropic
subspaces. Building blocks of are punctured polar spaces (i.e. a
observable and all maximum cliques passing to it are removed) of size given by
the Dedekind psi function . For multiple qudit mixtures (e.g.
qubit/quartit, qubit/octit and so on), one finds multiple copies of polar
spaces, ponctured polar spaces, hypercube geometries and other intricate
structures. Such structures play a role in the science of quantum information.Comment: 18 pages, version submiited to J. Phys. A: Math. Theo
Statistical Mechanics of Vacancy and Interstitial Strings in Hexagonal Columnar Crystals
Columnar crystals contain defects in the form of vacancy/interstitial loops
or strings of vacancies and interstitials bounded by column ``heads'' and
``tails''. These defect strings are oriented by the columnar lattice and can
change size and shape by movement of the ends and forming kinks along the
length. Hence an analysis in terms of directed living polymers is appropriate
to study their size and shape distribution, volume fraction, etc. If the
entropy of transverse fluctuations overcomes the string line tension in the
crystalline phase, a string proliferation transition occurs, leading to a
supersolid phase. We estimate the wandering entropy and examine the behaviour
in the transition regime. We also calculate numerically the line tension of
various species of vacancies and interstitials in a triangular lattice for
power-law potentials as well as for a modified Bessel function interaction
between columns as occurs in the case of flux lines in type-II superconductors
or long polyelectrolytes in an ionic solution. We find that the centered
interstitial is the lowest energy defect for a very wide range of interactions;
the symmetric vacancy is preferred only for extremely short interaction ranges.Comment: 22 pages (revtex), 15 figures (encapsulated postscript
Bases for qudits from a nonstandard approach to SU(2)
Bases of finite-dimensional Hilbert spaces (in dimension d) of relevance for
quantum information and quantum computation are constructed from angular
momentum theory and su(2) Lie algebraic methods. We report on a formula for
deriving in one step the (1+p)p qupits (i.e., qudits with d = p a prime
integer) of a complete set of 1+p mutually unbiased bases in C^p. Repeated
application of the formula can be used for generating mutually unbiased bases
in C^d with d = p^e (e > or = 2) a power of a prime integer. A connection
between mutually unbiased bases and the unitary group SU(d) is briefly
discussed in the case d = p^e.Comment: From a talk presented at the 13th International Conference on
Symmetry Methods in Physics (Dubna, Russia, 6-9 July 2009) organized in
memory of Prof. Yurii Fedorovich Smirnov by the Bogoliubov Laboratory of
Theoretical Physics of the JINR and the ICAS at Yerevan State University
- …
