1,746 research outputs found

    On the Equivalence Between Type I Liouville Dynamical Systems in the Plane and the Sphere

    Get PDF
    Producción CientíficaSeparable Hamiltonian systems either in sphero-conical coordinates on an S2 sphere or in elliptic coordinates on a R2 plane are described in a unified way. A back and forth route connecting these Liouville Type I separable systems is unveiled. It is shown how the gnomonic projection and its inverse map allow us to pass from a Liouville Type I separable system with a spherical configuration space to its Liouville Type I partners where the configuration space is a plane and back. Several selected spherical separable systems and their planar cousins are discussed in a classical context

    Projective dynamics and classical gravitation

    Full text link
    Given a real vector space V of finite dimension, together with a particular homogeneous field of bivectors that we call a "field of projective forces", we define a law of dynamics such that the position of the particle is a "ray" i.e. a half-line drawn from the origin of V. The impulsion is a bivector whose support is a 2-plane containing the ray. Throwing the particle with a given initial impulsion defines a projective trajectory. It is a curve in the space of rays S(V), together with an impulsion attached to each ray. In the simplest example where the force is identically zero, the curve is a straight line and the impulsion a constant bivector. A striking feature of projective dynamics appears: the trajectories are not parameterized. Among the projective force fields corresponding to a central force, the one defining the Kepler problem is simpler than those corresponding to other homogeneities. Here the thrown ray describes a quadratic cone whose section by a hyperplane corresponds to a Keplerian conic. An original point of view on the hidden symmetries of the Kepler problem emerges, and clarifies some remarks due to Halphen and Appell. We also get the unexpected conclusion that there exists a notion of divergence-free field of projective forces if and only if dim V=4. No metric is involved in the axioms of projective dynamics.Comment: 20 pages, 4 figure

    Freezing-induced self-assembly of amphiphilic molecules

    Full text link
    The self-assembly of amphiphilic molecules usually takes place in a liquid phase, near room temperature. Here, using small angle X-ray scattering (SAXS) experiments performed in real time, we show that freezing of aqueous solutions of copolymer amphiphilic molecules can induce self-assembly below 0{\deg}C.Comment: 10 pages, 3 figure

    Projective dynamics and first integrals

    Full text link
    We present the theory of tensors with Young tableau symmetry as an efficient computational tool in dealing with the polynomial first integrals of a natural system in classical mechanics. We relate a special kind of such first integrals, already studied by Lundmark, to Beltrami's theorem about projectively flat Riemannian manifolds. We set the ground for a new and simple theory of the integrable systems having only quadratic first integrals. This theory begins with two centered quadrics related by central projection, each quadric being a model of a space of constant curvature. Finally, we present an extension of these models to the case of degenerate quadratic forms.Comment: 39 pages, 2 figure

    Kustaanheimo-Stiefel Regularization and the Quadrupolar Conjugacy

    Get PDF
    In this note, we present the Kustaanheimo-Stiefel regularization in a symplectic and quaternionic fashion. The bilinear relation is associated with the moment map of the S1S^{1}- action of the Kustaanheimo-Stiefel transformation, which yields a concise proof of the symplecticity of the Kustaanheimo-Stiefel transformation symplectically reduced by this circle action. The relation between the Kustaanheimo-Stiefel regularization and the Levi-Civita regularization is established via the investigation of the Levi-Civita planes. A set of Darboux coordinates (which we call Chenciner-F\'ejoz coordinates) is generalized from the planar case to the spatial case. Finally, we obtain a conjugacy relation between the integrable approximating dynamics of the lunar spatial three-body problem and its regularized counterpart, similar to the conjugacy relation between the extended averaged system and the averaged regularized system in the planar case.Comment: 19 pages, corrected versio

    Pauli graphs when the Hilbert space dimension contains a square: why the Dedekind psi function ?

    Full text link
    We study the commutation relations within the Pauli groups built on all decompositions of a given Hilbert space dimension qq, containing a square, into its factors. Illustrative low dimensional examples are the quartit (q=4q=4) and two-qubit (q=22q=2^2) systems, the octit (q=8q=8), qubit/quartit (q=2×4q=2\times 4) and three-qubit (q=23q=2^3) systems, and so on. In the single qudit case, e.g. q=4,8,12,...q=4,8,12,..., one defines a bijection between the σ(q)\sigma (q) maximal commuting sets [with σ[q)\sigma[q) the sum of divisors of qq] of Pauli observables and the maximal submodules of the modular ring Zq2\mathbb{Z}_q^2, that arrange into the projective line P1(Zq)P_1(\mathbb{Z}_q) and a independent set of size σ(q)ψ(q)\sigma (q)-\psi(q) [with ψ(q)\psi(q) the Dedekind psi function]. In the multiple qudit case, e.g. q=22,23,32,...q=2^2, 2^3, 3^2,..., the Pauli graphs rely on symplectic polar spaces such as the generalized quadrangles GQ(2,2) (if q=22q=2^2) and GQ(3,3) (if q=32q=3^2). More precisely, in dimension pnp^n (pp a prime) of the Hilbert space, the observables of the Pauli group (modulo the center) are seen as the elements of the 2n2n-dimensional vector space over the field Fp\mathbb{F}_p. In this space, one makes use of the commutator to define a symplectic polar space W2n1(p)W_{2n-1}(p) of cardinality σ(p2n1)\sigma(p^{2n-1}), that encodes the maximal commuting sets of the Pauli group by its totally isotropic subspaces. Building blocks of W2n1(p)W_{2n-1}(p) are punctured polar spaces (i.e. a observable and all maximum cliques passing to it are removed) of size given by the Dedekind psi function ψ(p2n1)\psi(p^{2n-1}). For multiple qudit mixtures (e.g. qubit/quartit, qubit/octit and so on), one finds multiple copies of polar spaces, ponctured polar spaces, hypercube geometries and other intricate structures. Such structures play a role in the science of quantum information.Comment: 18 pages, version submiited to J. Phys. A: Math. Theo

    Statistical Mechanics of Vacancy and Interstitial Strings in Hexagonal Columnar Crystals

    Full text link
    Columnar crystals contain defects in the form of vacancy/interstitial loops or strings of vacancies and interstitials bounded by column ``heads'' and ``tails''. These defect strings are oriented by the columnar lattice and can change size and shape by movement of the ends and forming kinks along the length. Hence an analysis in terms of directed living polymers is appropriate to study their size and shape distribution, volume fraction, etc. If the entropy of transverse fluctuations overcomes the string line tension in the crystalline phase, a string proliferation transition occurs, leading to a supersolid phase. We estimate the wandering entropy and examine the behaviour in the transition regime. We also calculate numerically the line tension of various species of vacancies and interstitials in a triangular lattice for power-law potentials as well as for a modified Bessel function interaction between columns as occurs in the case of flux lines in type-II superconductors or long polyelectrolytes in an ionic solution. We find that the centered interstitial is the lowest energy defect for a very wide range of interactions; the symmetric vacancy is preferred only for extremely short interaction ranges.Comment: 22 pages (revtex), 15 figures (encapsulated postscript

    Bases for qudits from a nonstandard approach to SU(2)

    Full text link
    Bases of finite-dimensional Hilbert spaces (in dimension d) of relevance for quantum information and quantum computation are constructed from angular momentum theory and su(2) Lie algebraic methods. We report on a formula for deriving in one step the (1+p)p qupits (i.e., qudits with d = p a prime integer) of a complete set of 1+p mutually unbiased bases in C^p. Repeated application of the formula can be used for generating mutually unbiased bases in C^d with d = p^e (e > or = 2) a power of a prime integer. A connection between mutually unbiased bases and the unitary group SU(d) is briefly discussed in the case d = p^e.Comment: From a talk presented at the 13th International Conference on Symmetry Methods in Physics (Dubna, Russia, 6-9 July 2009) organized in memory of Prof. Yurii Fedorovich Smirnov by the Bogoliubov Laboratory of Theoretical Physics of the JINR and the ICAS at Yerevan State University
    corecore