On the Equivalence Between Type I Liouville Dynamical Systems in the Plane and the Sphere

Miguel A. González León, Juan Mateos Guilarte, and Marina de la Torre Mayado

Abstract Separable Hamiltonian systems either in sphero-conical coordinates on an S^2 sphere or in elliptic coordinates on a \mathbb{R}^2 plane are described in a unified way. A back and forth route connecting these Liouville Type I separable systems is unveiled. It is shown how the gnomonic projection and its inverse map allow us to pass from a Liouville Type I separable system with a spherical configuration space to its Liouville Type I partners where the configuration space is a plane and back. Several selected spherical separable systems and their planar cousins are discussed in a classical context.

Keywords Separation of variables \cdot Sphero-conical coordinates \cdot Elliptic coordinates \cdot Liouville dynamical systems \cdot Trajectory isomorphism

1 Introduction

Hamiltonian systems in \mathbb{R}^2 that admit separation of variables were completely determined by Liouville [1] and Morera [2], and can be classified, see [3], in four different types according to the system of coordinates where the separability is manifested: elliptic, polar, parabolic, and Cartesian, respectively. Thus Type I Liouville systems in \mathbb{R}^2 are defined by natural Hamiltonians: $H = K + \mathcal{U}$, $K = \frac{m}{2} \left((\frac{dx_1}{dt})^2 + (\frac{dx_2}{dt})^2 \right)$, that are separable in elliptic coordinates [3].

Departamento de Matemática Aplicada and IUFFyM, Universidad de Salamanca, Salamanca, Spain

e-mail: magleon@usal.es

J. Mateos Guilarte · M. de la Torre Mayado

Departamento de Física Fundamental and IUFFyM, Universidad de Salamanca, Salamanca, Spain e-mail: guilarte@usal.es; marina@usal.es

M. A. González León (⋈)

[©] Springer Nature Switzerland AG 2019

³⁵⁹

Ş. Kuru et al. (eds.), Integrability, Supersymmetry and Coherent States, CRM Series in Mathematical Physics, https://doi.org/10.1007/978-3-030-20087-9_16