research

Kustaanheimo-Stiefel Regularization and the Quadrupolar Conjugacy

Abstract

In this note, we present the Kustaanheimo-Stiefel regularization in a symplectic and quaternionic fashion. The bilinear relation is associated with the moment map of the S1S^{1}- action of the Kustaanheimo-Stiefel transformation, which yields a concise proof of the symplecticity of the Kustaanheimo-Stiefel transformation symplectically reduced by this circle action. The relation between the Kustaanheimo-Stiefel regularization and the Levi-Civita regularization is established via the investigation of the Levi-Civita planes. A set of Darboux coordinates (which we call Chenciner-F\'ejoz coordinates) is generalized from the planar case to the spatial case. Finally, we obtain a conjugacy relation between the integrable approximating dynamics of the lunar spatial three-body problem and its regularized counterpart, similar to the conjugacy relation between the extended averaged system and the averaged regularized system in the planar case.Comment: 19 pages, corrected versio

    Similar works