In this note, we present the Kustaanheimo-Stiefel regularization in a
symplectic and quaternionic fashion. The bilinear relation is associated with
the moment map of the S1- action of the Kustaanheimo-Stiefel
transformation, which yields a concise proof of the symplecticity of the
Kustaanheimo-Stiefel transformation symplectically reduced by this circle
action. The relation between the Kustaanheimo-Stiefel regularization and the
Levi-Civita regularization is established via the investigation of the
Levi-Civita planes. A set of Darboux coordinates (which we call
Chenciner-F\'ejoz coordinates) is generalized from the planar case to the
spatial case. Finally, we obtain a conjugacy relation between the integrable
approximating dynamics of the lunar spatial three-body problem and its
regularized counterpart, similar to the conjugacy relation between the extended
averaged system and the averaged regularized system in the planar case.Comment: 19 pages, corrected versio