216 research outputs found

    Módulo de suporte à decisão para licenciamento e regularização ambiental.

    Get PDF
    RESUMO: Este artigo descreve a modelagem e implementação de um sistema de suporte à decisão para licenciamento e regularização ambiental baseado em lógica fuzzy, desenvolvido como um módulo componente do Sistema Interativo de Suporte ao Licenciamento Ambiental (SISLA). O SISLA é um produto do projeto GeoMS, uma parceria entre a Embrapa Informática Agropecuária e o Instituto de Meio Ambiente de Mato Grosso do Sul (Imasul). Por meio desse módulo, o usuário poderá obter um suporte à tomada de decisão para processos de licenciamento ambiental. Esse suporte é fornecido a partir de variáveis de entrada, como distância e intersecção da área do empreendimento solicitante de licenciamento ambiental com áreas protegidas pelo governo estadual. Como saída, o sistema fornece o grau de ?Aptidão? do processo, que pode ser "Deferido", "Indeferido" ou "Pendência". Ao longo desse trabalho, serão descritos os métodos utilizados para a criação desse módulo, bem como alguns resultados obtidos com dados reais.SBIAgro 2011

    Endothelial Dysfunction In Cardiovascular And Endocrine-metabolic Diseases: An Update.

    Get PDF
    The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO) bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation of β-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS) uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations.44920-3

    Endothelial dysfunction in cardiovascular and endocrine-metabolic diseases: an update

    Get PDF
    The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO) bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation of β-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS) uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations449920932CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçã

    Upregulation of ERK1/2-eNOS via AT2 Receptors Decreases the Contractile Response to Angiotensin II in Resistance Mesenteric Arteries from Obese Rats

    Get PDF
    It has been clearly established that mitogen-activated protein kinases (MAPKS) are important mediators of angiotensin II (Ang II) signaling via AT1 receptors in the vasculature. However, evidence for a role of these kinases in changes of Ang II-induced vasoconstriction in obesity is still lacking. Here we sought to determine whether vascular MAPKs are differentially activated by Ang II in obese animals. the role of AT2 receptors was also evaluated. Male monosodium glutamate-induced obese (obese) and non-obese Wistar rats (control) were used. the circulating concentrations of Ang I and Ang II, determined by HPLC, were increased in obese rats. Ang II-induced isometric contraction was decreased in endothelium-intact resistance mesenteric arteries from obese compared with control rats and exhibited a retarded AT1 receptor antagonist response. Blocking of AT2 receptors and inhibition of either endothelial nitric oxide synthase (eNOS) or extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) restored Ang II-induced contraction in obese rats. Western blot analysis revealed increased protein expression of AT2 receptors in arteries from obese rats. Basal and Ang II-induced ERK1/2 phosphorylation was also increased in obese rats. Blockade of either AT1 or AT2 receptors corrected the increased ERK1/2 phosphorylation in arteries from obese rats to levels observed in control preparations. Phosphorylation of eNOS was increased in obese rats. Incubation with the ERK1/2 inhibitor before Ang II stimulation did not affect eNOS phosphorylation in control rats; however, it corrected the increased phosphorylation of eNOS in obese rats. These results clearly demonstrate that enhanced AT2 receptor and ERK1/2-induced, NO-mediated vasodilation reduces Ang II-induced contraction in an endothelium-dependent manner in obese rats.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ São Paulo, Inst Biomed Sci, Dept Pharmacol, São Paulo, BrazilUniv Fed Goias, Div Cardiovasc Physiol, Dept Biol Sci, Jatai, BrazilUniversidade Federal de São Paulo, Div Nephrol, Dept Med, Escola Paulista Med, São Paulo, BrazilUniversidade Federal de São Paulo, Div Nephrol, Dept Med, Escola Paulista Med, São Paulo, BrazilFAPESP: 2007/58311-0FAPESP: 2008/51622-3FAPESP: 2010/03642-5Web of Scienc

    A two-stage growth model for gilthead sea bream (Sparus aurata) based on the thermal growth coefficient

    Full text link
    Several authors have proposed models to describe fish growth taking the influence of temperature into account, and one of the most interesting is the "thermal unit growth coefficient" (TGC). Recent research has demonstrated that TGC varies throughout the growth cycle of fish, making it necessary to establish different stanzas. In this work, the original TGC model using 1/3 as an exponent was compared with a new model considering 2/3. Likewise, two stages for the growth of gilthead sea bream under commercial conditions in marine farms were detected by means of TGC seasonal models using the continuous temperature curve. A critical value for weight around 117g was obtained, which could mark the transition between two growth dynamics. To describe the weight evolution during a complete production cycle, the two growth stages were described by two separate seasonal TGC models (1/3-TGC model and 2/3-TGC model), and with an integrated model named the Mixed-TGC model, which presents interesting properties of continuity and differentiability and could be an important tool for fish farm management.V.D. Estruch and M. Jover were partially supported by the Universitat Politecnica de Valencia, PAID 2009-2010.Mayer, P.; Estruch Fuster, VD.; Jover Cerdá, M. (2012). A two-stage growth model for gilthead sea bream (Sparus aurata) based on the thermal growth coefficient. Aquaculture. 358-359:6-13. https://doi.org/10.1016/j.aquaculture.2012.06.016S613358-35

    Developmental Dental Aberrations After the Dioxin Accident in Seveso

    Get PDF
    Children’s developing teeth may be sensitive to environmental dioxins, and in animal studies developing teeth are one of the most sensitive targets of toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Twenty-five years after the dioxin accident in Seveso, Italy, 48 subjects from the contaminated areas (zones A and B) and in patches lightly contaminated (zone R) were recruited for the examination of dental and oral aberrations. Subjects were randomly invited from those exposed in their childhood and for whom frozen serum samples were available. The subjects were frequency matched with 65 subjects from the surrounding non-ABR zone for age, sex, and education. Concentrations of TCDD in previously analyzed plasma samples (zone ABR subjects only) ranged from 23 to 26,000 ng/kg in serum lipid. Ninety-three percent (25 of 27) of the subjects who had developmental enamel defects had been < 5 years of age at the time of the accident. The prevalence of defects in this age group was 42% (15 of 36) in zone ABR subjects and 26% (10 of 39) in zone non-ABR subjects, correlating with serum TCDD levels (p = 0.016). Hypodontia was seen in 12.5% (6 of 48) and 4.6% (3 of 65) of the zone ABR and non-ABR subjects, respectively, also correlating with serum TCDD level (p = 0.05). In conclusion, developmental dental aberrations were associated with childhood exposure to TCDD. In contrast, dental caries and periodontal disease, both infectious in nature, and oral pigmentation and salivary flow rate were not related to the exposure. The results support our hypothesis that dioxins can interfere with human organogenesis

    Identifying Critical Non-Catalytic Residues that Modulate Protein Kinase A Activity

    Get PDF
    Distal interactions between discrete elements of an enzyme are critical for communication and ultimately for regulation. However, identifying the components of such interactions has remained elusive due to the delicate nature of these contacts. Protein kinases are a prime example of an enzyme with multiple regulatory sites that are spatially separate, yet communicate extensively for tight regulation of activity. Kinase misregulation has been directly linked to a variety of cancers, underscoring the necessity for understanding intramolecular kinase regulation.A genetic screen was developed to identify suppressor mutations that restored catalytic activity in vivo from two kinase-dead Protein Kinase A mutants in S. cerevisiae. The residues defined by the suppressors provide new insights into kinase regulation. Many of the acquired mutations were distal to the nucleotide binding pocket, highlighting the relationship of spatially dispersed residues in regulation.The suppressor residues provide new insights into kinase regulation, including allosteric effects on catalytic elements and altered protein-protein interactions. The suppressor mutations identified in this study also share overlap with mutations identified from an identical screen in the yeast PKA homolog Tpk2, demonstrating functional conservation for some residues. Some mutations were independently isolated several times at the same sites. These sites are in agreement with sites previously identified from multiple cancer data sets as areas where acquired somatic mutations led to cancer progression and drug resistance. This method provides a valuable tool for identifying residues involved in kinase activity and for studying kinase misregulation in disease states

    Identifying Human Kinase-Specific Protein Phosphorylation Sites by Integrating Heterogeneous Information from Various Sources

    Get PDF
    Phosphorylation is an important type of protein post-translational modification. Identification of possible phosphorylation sites of a protein is important for understanding its functions. Unbiased screening for phosphorylation sites by in vitro or in vivo experiments is time consuming and expensive; in silico prediction can provide functional candidates and help narrow down the experimental efforts. Most of the existing prediction algorithms take only the polypeptide sequence around the phosphorylation sites into consideration. However, protein phosphorylation is a very complex biological process in vivo. The polypeptide sequences around the potential sites are not sufficient to determine the phosphorylation status of those residues. In the current work, we integrated various data sources such as protein functional domains, protein subcellular location and protein-protein interactions, along with the polypeptide sequences to predict protein phosphorylation sites. The heterogeneous information significantly boosted the prediction accuracy for some kinase families. To demonstrate potential application of our method, we scanned a set of human proteins and predicted putative phosphorylation sites for Cyclin-dependent kinases, Casein kinase 2, Glycogen synthase kinase 3, Mitogen-activated protein kinases, protein kinase A, and protein kinase C families (avaiable at http://cmbi.bjmu.edu.cn/huphospho). The predicted phosphorylation sites can serve as candidates for further experimental validation. Our strategy may also be applicable for the in silico identification of other post-translational modification substrates
    corecore