233 research outputs found

    Cloud computing for energy management in smart grid - an application survey

    Get PDF
    The smart grid is the emerging energy system wherein the application of information technology, tools and techniques that make the grid run more efficiently. It possesses demand response capacity to help balance electrical consumption with supply. The challenges and opportunities of emerging and future smart grids can be addressed by cloud computing. To focus on these requirements, we provide an in-depth survey on different cloud computing applications for energy management in the smart grid architecture. In this survey, we present an outline of the current state of research on smart grid development. We also propose a model of cloud based economic power dispatch for smart grid

    Baryon Resonances in the Double Pion Channel at Jefferson Lab (CEBAF): Experimental and Physical Analysis Status and Perspectives

    Get PDF
    Decay of light quark excited baryons in the double pion channel is discussed, as a particular way of investigating poorly know baryon resonances and searching for "missing states" predicted by quark models. A possible approach to the data analysis is discussed and some preliminary data from the CLAS collaboration at Jefferson Laboratory are presented

    Plasmonic Control of Radiative Properties of Semiconductor Quantum Dots Coupled to Plasmonic Ring Cavities

    Get PDF
    In recent years, a lot of effort has been made to achieve controlled delivery of target particles to the hotspots of plasmonic nanoantennas, in order to probe and/or exploit the extremely large field enhancements produced by such structures. While in many cases such high fields are advantageous, there are instances where they should be avoided. In this work, we consider the implications of using the standard nanoantenna geometries when colloidal quantum dots are employed as target entities. We show that in this case, and for various reasons, dimer antennas are not the optimum choice. Plasmonic ring cavities are a better option despite low field enhancements, as they allow collective coupling of many quantum dots in a reproducible and predictable manner. In cases where larger field enhancements are required, or for larger quantum dots, nonconcentric ring-disk cavities can be employed instead

    Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide

    Get PDF
    Nanoscale devices in which the interaction with light can be configured using external control signals hold great interest for next-generation optoelectronic circuits. Materials exhibiting a structural or electronic phase transition offer a large modulation contrast with multi-level optical switching and memory functionalities. In addition, plasmonic nanoantennas can provide an efficient enhancement mechanism for both the optically induced excitation and the readout of materials strategically positioned in their local environment. Here, we demonstrate picosecond all-optical switching of the local phase transition in plasmonic antenna-vanadium dioxide (VO2) hybrids, exploiting strong resonant field enhancement and selective optical pumping in plasmonic hotspots. Polarization- and wavelength-dependent pump-probe spectroscopy of multifrequency crossed antenna arrays shows that nanoscale optical switching in plasmonic hotspots does not affect neighboring antennas placed within 100 nm of the excited antennas. The antenna-assisted pumping mechanism is confirmed by numerical model calculations of the resonant, antenna-mediated local heating on a picosecond time scale. The hybrid, nanoscale excitation mechanism results in 20 times reduced switching energies and 5 times faster recovery times than a VO2 film without antennas, enabling fully reversible switching at over two million cycles per second and at local switching energies in the picojoule range. The hybrid solution of antennas and VO2 provides a conceptual framework to merge the field localization and phase-transition response, enabling precise, nanoscale optical memory functionalities

    A potential role for daptomycin in enterococcal infections: what is the evidence?

    Get PDF
    Nosocomial infections caused by enterococci present a challenge for clinicians because treatment options are often limited due to the widespread occurrence of strains resistant to multiple antibiotics, including vancomycin. Daptomycin is a first-in-class cyclic lipopeptide that has proven efficacy for the treatment of Gram-positive infections. Although methicillin-resistant Staphylococcus aureus has been the most prominent target in the clinical development of daptomycin, this agent has demonstrated potent bactericidal activity in enterococcal infection models and has been used for the treatment of enterococcal infections in humans. In recent years, large-scale susceptibility studies have shown that daptomycin is active against >98% of enterococci tested, irrespective of their susceptibility to other antibacterial agents. This lack of cross-resistance reflects the fact that daptomycin has a mode of action distinct from those of other antibiotics, including glycopeptides. While there are limited data available from randomized controlled trials, extensive clinical experience with daptomycin in enterococcal infections (including bacteraemia, endocarditis, skin and soft tissue infections, bone and joint infections and urinary tract infections) has been reported. This growing body of evidence provides useful insights regarding the efficacy of daptomycin against enterococci in clinical settings
    corecore