13,171 research outputs found

    Scientific basis for safely shutting in the Macondo Well after the April 20, 2010 Deepwater Horizon blowout

    Get PDF
    As part of the government response to the Deepwater Horizon blowout, a Well Integrity Team evaluated the geologic hazards of shutting in the Macondo Well at the seafloor and determined the conditions under which it could safely be undertaken. Of particular concern was the possibility that, under the anticipated high shut-in pressures, oil could leak out of the well casing below the seafloor. Such a leak could lead to new geologic pathways for hydrocarbon release to the Gulf of Mexico. Evaluating this hazard required analyses of 2D and 3D seismic surveys, seafloor bathymetry, sediment properties, geophysical well logs, and drilling data to assess the geological, hydrological, and geomechanical conditions around the Macondo Well. After the well was successfully capped and shut in on July 15, 2010, a variety of monitoring activities were used to assess subsurface well integrity. These activities included acquisition of wellhead pressure data, marine multichannel seismic pro- files, seafloor and water-column sonar surveys, and wellhead visual/acoustic monitoring. These data showed that the Macondo Well was not leaking after shut in, and therefore, it could remain safely shut until reservoir pressures were suppressed (killed) with heavy drilling mud and the well was sealed with cement

    Mixed Gauge and Anomaly Mediation From New Physics at 10 TeV

    Get PDF
    In the context of anomaly-mediated supersymmetry breaking, it is natural for vectorlike fields and singlets to have supersymmetry breaking masses of order 10 TeV, and therefore act as messengers of supersymmetry breaking. We show that this can give rise to phenomenologically viable spectra compatible with perturbative gauge coupling unification. The minimal model interpolates continuously between pure anomaly mediation and gauge mediation with a messenger scale of order 10 TeV. It is also possible to have non-minimal models with more degenerate specta, with some squarks lighter than sleptons. These models reduce to the MSSM at low energies and incorporate a natural solution of the mu problem. The minimal model has four continuous parameters and one discrete parameter (the number of messengers). The LEP Higgs mass bound can be satisfied in the minimal model by tuning parameters at the GUT scale to one part in 50.Comment: 17 pages, 4 figure

    An upper limit for the water outgassing rate of the main-belt comet 176P/LINEAR observed with Herschel/HIFI

    Get PDF
    176P/LINEAR is a member of the new cometary class known as main-belt comets (MBCs). It displayed cometary activity shortly during its 2005 perihelion passage that may be driven by the sublimation of sub-surface ices. We have therefore searched for emission of the H2O 110-101 ground state rotational line at 557 GHz toward 176P/LINEAR with the Heterodyne Instrument for the Far Infrared (HIFI) on board the Herschel Space Observatory on UT 8.78 August 2011, about 40 days after its most recent perihelion passage, when the object was at a heliocentric distance of 2.58 AU. No H2O line emission was detected in our observations, from which we derive sensitive 3-sigma upper limits for the water production rate and column density of < 4e25 molec/s and of < 3e10 cm^{-2}, respectively. From the peak brightness measured during the object's active period in 2005, this upper limit is lower than predicted by the relation between production rates and visual magnitudes observed for a sample of comets by Jorda et al. (2008) at this heliocentric distance. Thus, 176P/LINEAR was likely less active at the time of our observation than during its previous perihelion passage. The retrieved upper limit is lower than most values derived for the H2O production rate from the spectroscopic search for CN emission in MBCs.Comment: 5 pages, 2 figures. Minor changes to match published versio

    Validation of nonlinear PCA

    Full text link
    Linear principal component analysis (PCA) can be extended to a nonlinear PCA by using artificial neural networks. But the benefit of curved components requires a careful control of the model complexity. Moreover, standard techniques for model selection, including cross-validation and more generally the use of an independent test set, fail when applied to nonlinear PCA because of its inherent unsupervised characteristics. This paper presents a new approach for validating the complexity of nonlinear PCA models by using the error in missing data estimation as a criterion for model selection. It is motivated by the idea that only the model of optimal complexity is able to predict missing values with the highest accuracy. While standard test set validation usually favours over-fitted nonlinear PCA models, the proposed model validation approach correctly selects the optimal model complexity.Comment: 12 pages, 5 figure

    Decoupling social status and status certainty effects on health in macaques: a network approach.

    Get PDF
    BackgroundAlthough a wealth of literature points to the importance of social factors on health, a detailed understanding of the complex interplay between social and biological systems is lacking. Social status is one aspect of social life that is made up of multiple structural (humans: income, education; animals: mating system, dominance rank) and relational components (perceived social status, dominance interactions). In a nonhuman primate model we use novel network techniques to decouple two components of social status, dominance rank (a commonly used measure of social status in animal models) and dominance certainty (the relative certainty vs. ambiguity of an individual's status), allowing for a more complex examination of how social status impacts health.MethodsBehavioral observations were conducted on three outdoor captive groups of rhesus macaques (N = 252 subjects). Subjects' general physical health (diarrhea) was assessed twice weekly, and blood was drawn once to assess biomarkers of inflammation (interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and C-reactive protein (CRP)).ResultsDominance rank alone did not fully account for the complex way that social status exerted its effect on health. Instead, dominance certainty modified the impact of rank on biomarkers of inflammation. Specifically, high-ranked animals with more ambiguous status relationships had higher levels of inflammation than low-ranked animals, whereas little effect of rank was seen for animals with more certain status relationships. The impact of status on physical health was more straightforward: individuals with more ambiguous status relationships had more frequent diarrhea; there was marginal evidence that high-ranked animals had less frequent diarrhea.DiscussionSocial status has a complex and multi-faceted impact on individual health. Our work suggests an important role of uncertainty in one's social status in status-health research. This work also suggests that in order to fully explore the mechanisms for how social life influences health, more complex metrics of social systems and their dynamics are needed

    Determining the crystal-field ground state in rare earth Heavy Fermion materials using soft-x-ray absorption spectroscopy

    Full text link
    We infer that soft-x-ray absorption spectroscopy is a versatile method for the determination of the crystal-field ground state symmetry of rare earth Heavy Fermion systems, complementing neutron scattering. Using realistic and universal parameters, we provide a theoretical mapping between the polarization dependence of Ce M4,5M_{4,5} spectra and the charge distribution of the Ce 4f4f states. The experimental resolution can be orders of magnitude larger than the 4f4f crystal field splitting itself. To demonstrate the experimental feasibility of the method, we investigated CePd2_2Si2_2, thereby settling an existing disagreement about its crystal-field ground state

    The activation energy for GaAs/AlGaAs interdiffusion

    Get PDF
    Copyright 1997 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Journal of Applied Physics 82, 4842 (1997) and may be found at

    Don't bleach chaotic data

    Full text link
    A common first step in time series signal analysis involves digitally filtering the data to remove linear correlations. The residual data is spectrally white (it is ``bleached''), but in principle retains the nonlinear structure of the original time series. It is well known that simple linear autocorrelation can give rise to spurious results in algorithms for estimating nonlinear invariants, such as fractal dimension and Lyapunov exponents. In theory, bleached data avoids these pitfalls. But in practice, bleaching obscures the underlying deterministic structure of a low-dimensional chaotic process. This appears to be a property of the chaos itself, since nonchaotic data are not similarly affected. The adverse effects of bleaching are demonstrated in a series of numerical experiments on known chaotic data. Some theoretical aspects are also discussed.Comment: 12 dense pages (82K) of ordinary LaTeX; uses macro psfig.tex for inclusion of figures in text; figures are uufile'd into a single file of size 306K; the final dvips'd postscript file is about 1.3mb Replaced 9/30/93 to incorporate final changes in the proofs and to make the LaTeX more portable; the paper will appear in CHAOS 4 (Dec, 1993
    corecore