53 research outputs found

    Offshore aquaculture of finfish: Big expectations at sea

    Get PDF
    Offshore aquaculture has gained momentum in recent years, and the production of an increasing number of marine fish species is being relocated offshore. Initially, predictions of the advantages that offshore aquaculture would present over nearshore farming were made without enough science-based evidence. Now, with more scientific knowledge, this review revisits past predictions and expectations of offshore aquaculture. We analysed and explained the oceanographic features that define offshore and nearshore sites. Using Atlantic salmon (Salmo salar) as a case study, we focussed on sea lice, amoebic gill disease, and the risk of harmful algal blooms, as well as the direct effects of the oceanography on the health and physiology of fish. The operational and licencing challenges and advantages of offshore aquaculture are also considered. The lack of space in increasingly saturated sheltered areas will push new farms out to offshore locations and, if appropriate steps are followed, offshore aquaculture can be successful. Firstly, the physical capabilities of the farmed fish species and infrastructure must be fully understood. Secondly, the oceanography of potential sites must be carefully studied to confirm that they are compatible with the species-specific capabilities. And, thirdly, an economic plan considering the operational costs and licencing limitations of the site must be developed. This review will serve as a guide and a compilation of information for researchers and stakeholders

    "This does my head in". Ethnographic study of self-management by people with diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Self-management is rarely studied 'in the wild'. We sought to produce a richer understanding of how people live with diabetes and why self-management is challenging for some.</p> <p>Method</p> <p>Ethnographic study supplemented with background documents on social context. We studied a socio-economically and ethnically diverse UK population. We sampled 30 people with diabetes (15 type 1, 15 type 2) by snowballing from patient groups, community contacts and NHS clinics. Participants (aged 5-88, from a range of ethnic and socio-economic groups) were shadowed at home and in the community for 2-4 periods of several hours (total 88 visits, 230 hours); interviewed (sometimes with a family member or carer) about their self-management efforts and support needs; and taken out for a meal. Detailed field notes were made and annotated. Data analysis was informed by structuration theory, which assumes that individuals' actions and choices depend on their dispositions and capabilities, which in turn are shaped and constrained (though not entirely determined) by wider social structures.</p> <p>Results</p> <p>Self-management comprised both practical and cognitive tasks (e.g. self-monitoring, menu planning, medication adjustment) and socio-emotional ones (e.g. coping with illness, managing relatives' input, negotiating access to services or resources). Self-management was hard work, and was enabled or constrained by economic, material and socio-cultural conditions within the family, workplace and community. Some people managed their diabetes skilfully and flexibly, drawing on personal capabilities, family and social networks and the healthcare system. For others, capacity to self-manage (including overcoming economic and socio-cultural constraints) was limited by co-morbidity, cognitive ability, psychological factors (e.g. under-confidence, denial) and social capital. The consequences of self-management efforts strongly influenced people's capacity and motivation to continue them.</p> <p>Conclusion</p> <p>Self-management of diabetes is physically, intellectually, emotionally and socially demanding. Non-engagement with self-management may make sense in the context of low personal resources (e.g. health literacy, resilience) and overwhelming personal, family and social circumstances. Success of self-management as a policy solution will be affected by interacting influences at three levels: [a] at micro level by individuals' dispositions and capabilities; [b] at meso level by roles, relationships and material conditions within the family and in the workplace, school and healthcare organisation; and [c] at macro level by prevailing economic conditions, cultural norms and expectations, and the underpinning logic of the healthcare system. We propose that the research agenda on living with diabetes be extended and the political economy of self-management systematically studied.</p

    A gap analysis on modelling of sea lice infection pressure from salmonid farms. II. Identifying and ranking knowledge gaps: output of an international workshop

    Get PDF
    Sea lice are a major health hazard for farmed Atlantic salmon in Europe, and their impact is felt globally. Given the breadth of ongoing research in sea lice dispersal and population modelling, and focus on research-led adaptive management, we brought experts together to discuss research knowledge gaps. Gaps for salmon lice infection pressure from fish farms were identified and scored by experts in sea lice-aquaculture-environment interactions, at an international workshop in 2021. The contributors included experts based in Scotland, Norway, Ireland, Iceland, Canada, the Faroe Islands, England and Australia, employed by governments, industry, universities and non-government organisations. The workshop focused on knowledge gaps underpinning 5 key stages in salmon lice infection pressure from fish farms: larval production; larval transport and survival; exposure and infestation of new hosts; development and survival of the attached stages; and impact on host populations. A total of 47 research gaps were identified; 5 broad themes emerged with 13 priority research gaps highlighted as important across multiple sectors. The highest-ranking gap called for higher quality and frequency of on-farm lice count data, along with better sharing of information across sectors. We highlight the need for synergistic international collaboration to maximise transferable knowledge. Round table discussions through collaborative workshops provide an important forum for experts to discuss and agree research priorities

    A gap analysis on modelling of sea lice infection pressure from salmonid farms. I. A structured knowledge review

    Get PDF
    Sustainability of aquaculture, an important component of the blue economy, relies in part on ensuring assessment of environmental impact and interactions relating to sea lice dispersing from open pen salmon and trout farms. We review research underpinning the key stages in the sea lice infection process to support modelling of lice on wild salmon in relation to those on farms. The review is split into 5 stages: larval production; larval transport and survival; exposure and infestation of new hosts; development and survival of the attached stages; and impact on host populations. This modular structure allows the existing published data to be reviewed and assessed to identify data gaps in modelling sea lice impacts in a systematic way. Model parameterisation and parameter variation is discussed for each stage, providing an overview of knowledge strength and gaps. We conclude that a combination of literature review, empirical data collection and modelling studies are required on an iterative basis to ensure best practice is applied for sustainable aquaculture. The knowledge gained can then be optimised and applied at regional scales, with the most suitable modelling frameworks applied for the system, given regional limitations

    Controlling for Prior Attainment Reduces the Positive Influence that Single-Gender Classroom Initiatives Exert on High School Students’ Scholastic Achievements.

    Get PDF
    Research points to the positive impact that gender-segregated schooling and classroom initiatives exert on academic attainment. An evaluation of these studies which reveal positive effects highlights, however, that students are typically selectively assigned to single- or mixed-gender instructional settings, presenting a methodological confound. The current study controls for students’ prior attainment to appraise the efficacy of a single-gender classroom initiative implemented in a co-educational high school in the United Kingdom. Secondary data analysis (using archived data) was performed on 266 middle-ability, 11–12 year-old students’ standardized test scores in Languages (English, foreign language), STEM-related (Mathematics, Science, Information and Communication Technology), and Non-STEM subjects (art, music, drama). Ninety-eight students (54, 55% female) were taught in single-gender and 168 (69, 41% female) in mixed-gender classrooms. Students undertook identical tests irrespective of classroom type, which were graded in accordance with U.K national curriculum guidelines. Controlling for students’ prior attainment, findings indicate that students do not appear to benefit from being taught in single-gender relative to mixed-gender classrooms in Language and STEM-related subjects. Young women benefitted from being taught in mixed-gender relative to single-gender classes for Non-STEM subjects. However, when prior ability is not controlled for, the intervention appears to be effective for all school subjects, highlighting the confounding influence of selective admissions. These findings suggest that gender-segregated classroom initiatives may not bolster students’ grades. It is argued that studies that do not control for selection effects may tell us little about the effectiveness of such interventions on scholastic achievement

    Interactive effects of multiple stressors with significant wave height exposure on farmed Atlantic salmon (Salmo salar) welfare along an inshore-offshore gradient

    No full text
    Fish farming is the fastest growing food production sector worldwide and now accounts for most human fish consumption. Expansion of finfish aquaculture to exposed offshore marine environments is appealing where additional sheltered areas are unavailable. While more energetic environments may reduce waste accumulation and parasite exposure, effects on fish health and wellbeing are largely speculative. The multiple stressors faced by fish on offshore farms may interact synergistically and increase their cumulative impact. We used 20 months of health and welfare data from eight Atlantic salmon (Salmo salar) sea pen farms in Scotland along a wave exposure gradient to assess the effects of, and interactions between, environmental variables and management treatments on fish mortality and parasite loads. While farms showed high variability in mortality rate and sea lice infections, multi-level Bayesian modelling indicated that wave exposure primarily modulated effects of other variables. Higher exposure farms showed steeper increases in mortality with time and with extreme temperatures. Similarly, sea lice infections tended to increase with time, with higher exposure farms seeing steeper increases at higher Amoebic Gill Disease (AGD) scores and at high temperatures. The effect of AGD was greater at slow water speeds. Treatments against parasites were more frequent at low exposure farms, leading to uncertainty in their impact on welfare across farms. The support for interactive effects of wave exposure with other variables rather than strong direct effects suggests an accumulation of chronic and acute stressors. Expansion of aquaculture to more energetic offshore environments may have negative impacts on fish health in some circumstances, requiring adaptation of practices. In particular, the stronger increase in mortality over time may have implications for cycle length in different environments, and the more dramatic impacts of the warmest temperatures at high exposure farms call for consideration of the change in water temperature both inshore and offshore

    Effect of water depth and the bottom boundary layer upon internal wave generation over abrupt topography

    Get PDF
    The role of water depth and bottom boundary layer turbulence upon lee-wave generation in sill regions is examined. Their effect upon vertical mixing is also considered. Calculations are performed using a non-hydrostatic model in cross-section form with a specified tidal forcing. Initial calculations in deeper water and a sill height such that the sill top is well removed from the surrounding bed region showed that downstream lee-wave generation and associated mixing increased as bottom friction coefficient k increased. This was associated with an increase in current shear across the sill. However, for a given k, increasing vertical eddy viscosity A (v) reduced vertical shear in the across sill velocity, leading to a reduction in lee-wave amplitude and associated mixing. Subsequent calculations using shallower water showed that for a given k and A (v,) lee-wave generation was reduced due to the shallower water depth and changes in the bottom boundary layer. However, in this case (unlike in the deepwater case), there is an appreciable bottom current. This gives rise to bottom mixing which in shallow water extends to mid-depth and enhances the mid-water mixing that is found on the lee side of the sill. Final calculations with deeper water but small sill height showed that lee waves could propagate over the sill, thereby reducing their contribution to mixing. In this case, bottom mixing was the major source of mixing which was mainly confined to the near bed region, with little mid-water mixin
    • …
    corecore