62 research outputs found

    Preface

    Get PDF

    Preface

    Get PDF

    Preface

    Get PDF

    ALD growth of MoS2 nanosheets on TiO2 nanotube supports

    Get PDF
    Two-dimensional MoS2 nanostructures are highly interesting and effective in a number of energy-related applications. In this work, the synthesis of ultra-thin MoS2 nanosheets produced by the thermal Atomic Layer Deposition (ALD) process is reported for the first time using a previously unpublished set of precursors, namely bis(t-butylimido)bis(dimethylamino)molybdenum and hydrogen sulfide. These nanosheets are homogenously deposited within one-dimensional anodic TiO2 nanotube layers that act as a high surface area conductive support for the MoS2 nanosheets. The decoration of high aspect ratio TiO2 nanotube layers with MoS2 nanosheets over the entire nanotube layer thickness is shown for the first time. The homogeneous distribution of the MoS2 nanosheets is proved by STEM/EDX. This resulting new composite is employed as anode for Li-ion microbatteries. The MoS2-decorated TiO2 nanotube layers show a superior performance compared to their counterparts without MoS2. Compared to electrochemical performance of pristine TiO2 nanotube, a more than 50% higher areal capacity and a coulombic efficiency of 98% are obtained on the MoS2 decorated TiO2 nanotube layers, demonstrating clear synergic benefits of the new composite structure

    TiO2 Nanotube Layers Decorated with Al2O3/MoS2/Al2O3 as Anode for Li-ion Microbatteries with Enhanced Cycling Stability

    Get PDF
    TiO2 nanotube layers (TNTs) decorated with Al2O3/MoS2/Al2O3 are investigated as a negative electrode for 3D Li-ion microbatteries. Homogenous nanosheets decoration of MoS2, sandwiched between Al2O3 coatings within self-supporting TNTs was carried out using atomic layer deposition (ALD) process. The structure, morphology, and electrochemical performance of the Al2O3/MoS2/Al2O3-decorated TNTs were studied using scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and chronopotentiometry. Al2O3/MoS2/Al2O3-decorated TNTs deliver an areal capacity almost three times higher than that obtained for MoS2-decorated TNTs and as-prepared TNTs after 100 cycles at 1C. Moreover, stable and high discharge capacity (414 mu Ah cm(-2)) has been obtained after 200 cycles even at very fast kinetics (3C)

    Effect of Iron Overload and Iron Deficiency on Liver Hemojuvelin Protein

    Get PDF
    INTRODUCTION: Hemojuvelin (Hjv) is a key component of the signaling cascade that regulates liver hepcidin (Hamp) expression. The purpose of this study was to determine Hjv protein levels in mice and rats subjected to iron overload and iron deficiency. METHODS: C57BL/6 mice were injected with iron (200 mg/kg); iron deficiency was induced by feeding of an iron-deficient diet, or by repeated phlebotomies. Erythropoietin (EPO)-treated mice were administered recombinant EPO at 50 U/mouse. Wistar rats were injected with iron (1200 mg/kg), or fed an iron-deficient diet. Hjv protein was determined by immunoblotting, liver samples from Hjv-/- mice were used as negative controls. Mouse plasma Hjv content was determined by a commercial ELISA kit. RESULTS: Liver crude membrane fraction from both mice and rats displayed a major Hjv-specific band at 35 kDa, and a weaker band of 20 kDa. In mice, the intensity of these bands was not changed following iron injection, repeated bleeding, low iron diet or EPO administration. No change in liver crude membrane Hjv protein was observed in iron-treated or iron-deficient rats. ELISA assay for mouse plasma Hjv did not show significant difference between Hjv+/+ and Hjv-/- mice. Liver Hamp mRNA, Bmp6 mRNA and Id1 mRNA displayed the expected response to iron overload and iron deficiency. EPO treatment decreased Id1 mRNA, suggesting possible participation of the bone morphogenetic protein pathway in EPO-mediated downregulation of Hamp mRNA. DISCUSSION: Since no differences between Hjv protein levels were found following various experimental manipulations of body iron status, the results indicate that, in vivo, substantial changes in Hamp mRNA can occur without noticeable changes of membrane hemojuvelin content. Therefore, modulation of hemojuvelin protein content apparently does not represent the limiting step in the control of Hamp gene expression

    Hydrodynamics of fossil fishes

    Get PDF
    Fromtheir earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall dragwhile serving a protective function. Here,we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms

    Bullet impacts and built heritage damage 1640–1939

    Get PDF
    © 2018, The Author(s). Conflict damage to heritage has been thrust into the global spotlight during recent conflict in the Middle East. While the use of social media has heightened and enhanced public awareness of this ‘cultural terrorism’, the occurrence of this type of vandalism is not new. In fact, as this study demonstrates, evidence of the active targeting of sites, as well as collateral damage when heritage is caught in crossfire, is widely visible around Europe and further afield. Using a variety of case studies ranging from the 1640s to the 1930s, we illustrate and quantify the changing impact of ballistics on heritage buildings as weaponry and ammunition have increased in both energy and energy density potential. In the first instance, this study highlights the increasing threats to heritage in conflict areas. Second, it argues for the pressing need to quantify and map damage to the stonework in order to respond to these challenges
    corecore