9 research outputs found

    Differences in Signaling Patterns on PI3K Inhibition Reveal Context Specificity in <i>KRAS</i>-Mutant Cancers.

    Get PDF
    It is increasingly appreciated that drug response to different cancers driven by the same oncogene is different and may relate to differences in rewiring of signal transduction. We aimed to study differences in dynamic signaling changes within mutant KRAS (KRAS MT), non-small cell lung cancer (NSCLC), colorectal cancer, and pancreatic ductal adenocarcinoma (PDAC) cells. We used an antibody-based phosphoproteomic platform to study changes in 50 phosphoproteins caused by seven targeted anticancer drugs in a panel of 30 KRAS MT cell lines and cancer cells isolated from 10 patients with KRAS MT cancers. We report for the first time significant differences in dynamic signaling between colorectal cancer and NSCLC cell lines exposed to clinically relevant equimolar concentrations of the pan-PI3K inhibitor pictilisib including a lack of reduction of p-AKTser473 in colorectal cancer cell lines (P = 0.037) and lack of compensatory increase in p-MEK in NSCLC cell lines (P = 0.036). Differences in rewiring of signal transduction between tumor types driven by KRAS MT cancers exist and influence response to combination therapy using targeted agents

    A Wide and Deep Neural Network for Survival Analysis from Anatomical Shape and Tabular Clinical Data

    Full text link
    We introduce a wide and deep neural network for prediction of progression from patients with mild cognitive impairment to Alzheimer's disease. Information from anatomical shape and tabular clinical data (demographics, biomarkers) are fused in a single neural network. The network is invariant to shape transformations and avoids the need to identify point correspondences between shapes. To account for right censored time-to-event data, i.e., when it is only known that a patient did not develop Alzheimer's disease up to a particular time point, we employ a loss commonly used in survival analysis. Our network is trained end-to-end to combine information from a patient's hippocampus shape and clinical biomarkers. Our experiments on data from the Alzheimer's Disease Neuroimaging Initiative demonstrate that our proposed model is able to learn a shape descriptor that augments clinical biomarkers and outperforms a deep neural network on shape alone and a linear model on common clinical biomarkers.Comment: Data and Machine Learning Advances with Multiple Views Workshop, ECML-PKDD 201

    Prediction of overall survival for patients with metastatic castration-resistant prostate cancer : development of a prognostic model through a crowdsourced challenge with open clinical trial data

    Get PDF
    Background Improvements to prognostic models in metastatic castration-resistant prostate cancer have the potential to augment clinical trial design and guide treatment strategies. In partnership with Project Data Sphere, a not-for-profit initiative allowing data from cancer clinical trials to be shared broadly with researchers, we designed an open-data, crowdsourced, DREAM (Dialogue for Reverse Engineering Assessments and Methods) challenge to not only identify a better prognostic model for prediction of survival in patients with metastatic castration-resistant prostate cancer but also engage a community of international data scientists to study this disease. Methods Data from the comparator arms of four phase 3 clinical trials in first-line metastatic castration-resistant prostate cancer were obtained from Project Data Sphere, comprising 476 patients treated with docetaxel and prednisone from the ASCENT2 trial, 526 patients treated with docetaxel, prednisone, and placebo in the MAINSAIL trial, 598 patients treated with docetaxel, prednisone or prednisolone, and placebo in the VENICE trial, and 470 patients treated with docetaxel and placebo in the ENTHUSE 33 trial. Datasets consisting of more than 150 clinical variables were curated centrally, including demographics, laboratory values, medical history, lesion sites, and previous treatments. Data from ASCENT2, MAINSAIL, and VENICE were released publicly to be used as training data to predict the outcome of interest-namely, overall survival. Clinical data were also released for ENTHUSE 33, but data for outcome variables (overall survival and event status) were hidden from the challenge participants so that ENTHUSE 33 could be used for independent validation. Methods were evaluated using the integrated time-dependent area under the curve (iAUC). The reference model, based on eight clinical variables and a penalised Cox proportional-hazards model, was used to compare method performance. Further validation was done using data from a fifth trial-ENTHUSE M1-in which 266 patients with metastatic castration-resistant prostate cancer were treated with placebo alone. Findings 50 independent methods were developed to predict overall survival and were evaluated through the DREAM challenge. The top performer was based on an ensemble of penalised Cox regression models (ePCR), which uniquely identified predictive interaction effects with immune biomarkers and markers of hepatic and renal function. Overall, ePCR outperformed all other methods (iAUC 0.791; Bayes factor >5) and surpassed the reference model (iAUC 0.743; Bayes factor >20). Both the ePCR model and reference models stratified patients in the ENTHUSE 33 trial into high-risk and low-risk groups with significantly different overall survival (ePCR: hazard ratio 3.32, 95% CI 2.39-4.62, p Interpretation Novel prognostic factors were delineated, and the assessment of 50 methods developed by independent international teams establishes a benchmark for development of methods in the future. The results of this effort show that data-sharing, when combined with a crowdsourced challenge, is a robust and powerful framework to develop new prognostic models in advanced prostate cancer.Peer reviewe

    Assessing reliability of intra-tumor heterogeneity estimates from single sample whole exome sequencing data

    No full text
    International audienceTumors are made of evolving and heterogeneous populations of cells which arise from successive appearance and expansion of subclonal populations, following acquisition of mutations conferring them a selective advantage. Those subclonal populations can be sensitive or resistant to different treatments, and provide information about tumor aetiology and future evolution. Hence, it is important to be able to assess the level of heterogeneity of tumors with high reliability for clinical applications. In the past few years, a large number of methods have been proposed to estimate intra-tumor heterogeneity from whole exome sequencing (WES) data, but the accuracy and robustness of these methods on real data remains elusive. Here we systematically apply and compare 6 computational methods to estimate tumor heterogeneity on 1,697 WES samples from the cancer genome atlas (TCGA) covering 3 cancer types (breast invasive carcinoma, bladder urothelial carcinoma, and head and neck squamous cell carcinoma), and two distinct input mutation sets. We observe significant differences between the estimates produced by different methods, and identify several likely confounding factors in heterogeneity assessment for the different methods. We further show that the prognostic value of tumor heterogeneity for survival prediction is limited in those datasets, and find no evidence that it improves over prognosis based on other clinical variables. In conclusion, heterogeneity inference from WES data on a single sample, and its use in cancer prognosis, should be considered with caution. Other approaches to assess intra-tumoral heterogeneity such as those based on multiple samples may be preferable for clinical applications
    corecore