139 research outputs found

    Large-scale deformed quasiparticle random-phase approximation calculations of the γ\gamma-ray strength function using the Gogny force

    Full text link
    Valuable theoretical predictions of nuclear dipole excitations in the whole chart are of great interest for different nuclear applications, including in particular nuclear astrophysics. Here we present large-scale calculations of the E1E1 γ\gamma-ray strength function obtained in the framework of the axially-symmetric deformed QRPA based on the finite-range Gogny force. This approach is applied to even-even nuclei, the strength function for odd nuclei being derived by interpolation. The convergence with respect to the adopted number of harmonic oscillator shells and the cut-off energy introduced in the 2-quasiparticle (2-qpqp) excitation space is analyzed. The calculations performed with two different Gogny interactions, namely D1S and D1M, are compared. A systematic energy shift of the E1E1 strength is found for D1M relative to D1S, leading to a lower energy centroid and a smaller energy-weighted sum rule for D1M. When comparing with experimental photoabsorption data, the Gogny-QRPA predictions are found to overestimate the giant dipole energy by typically \sim2 MeV. Despite the microscopic nature of our self-consistent Hartree-Fock-Bogoliubov plus QRPA calculation, some phenomenological corrections need to be included to take into account the effects beyond the standard 2-qpqp QRPA excitations and the coupling between the single-particle and low-lying collective phonon degrees of freedom. For this purpose, three prescriptions of folding procedure are considered and adjusted to reproduce experimental photoabsorption data at best. All of them are shown to lead to rather similar predictions of the E1E1 strength, both at low energies and for exotic neutron-rich nuclei. Predictions of γ\gamma-ray strength functions and Maxwellian-averaged neutron capture rates for the whole Sn isotopic chain are also discussed and compared with previous theoretical calculations

    Shell structure in neutron-rich Ca and Ni nuclei under semi-realistic mean fields

    Full text link
    Shell structure in the neutron-rich Ca and Ni nuclei is investigated by the spherical Hartree-Fock calculations with the semi-realistic NNNN interactions. Specific ingredients of the effective interaction, particularly the tensor force, often play a key role in the ZZ dependence of the neutron shell structure. Such examples are found in N=32 and N=40; N=32 becomes magic or submagic in 52^{52}Ca while its magicity is broken in 60^{60}Ni, and N=40 is submagic (though not magic) in 68^{68}Ni but not in 60^{60}Ca. Comments are given on the doubly magic nature of 78^{78}Ni. We point out that the loose binding can lead to a submagic number N=58 in 86^{86}Ni, assisted by the weak pair coupling.Comment: 14 pages including 5 figures, to appear in Physical Review C (Rapid Communication

    Giant resonances in exotic spherical nuclei within the RPA approach with the Gogny force

    Full text link
    Theoretical results for giant resonances in the three doubly magic exotic nuclei 78^{78}Ni, 100^{100}Sn and 132^{132}Sn are obtained from Hartree-Fock (HF) plus Random Phase Approximation (RPA) calculations using the D1S parametrization of the Gogny two-body effective interaction. Special attention is paid to full consistency between the HF field and the RPA particle-hole residual interaction. The results for the exotic nuclei, on average, appear similar to those of stable ones, especially for quadrupole and octupole states. More exotic systems have to be studied in order to confirm such a trend. The low energy of the monopole resonance in 78^{78}Ni suggests that the compression modulus in this neutron rich nucleus is lower than the one of stable ones.Comment: 16 pages, 10 figure

    Role of deformation on giant resonances within the QRPA approach and the Gogny force

    Full text link
    Fully consistent axially-symmetric-deformed Quasi-particle Random Phase Approximation (QRPA) calculations have been performed, in which the same Gogny D1S effective force has been used for both the Hartree-Fock-Bogolyubov mean field and the QRPA approaches. Giant resonances calculated in deformed 2628^{26-28}Si and 2224^{22-24}Mg nuclei as well as in the spherical 30^{30}Si and 28^{28}Mg isotopes are presented. Theoretical results for isovector-dipole and isoscalar monopole, quadrupole, and octupole responses are presented and the impact of the intrinsic nuclear deformation is discussed.Comment: 12 pages, 6 figures and 4 tables, accepted in PR

    Quadrupole moment of the 6− isomeric state in 66Cu: Interplay between different nuclear deformation driving forces

    Get PDF
    AbstractWe have measured the spectroscopic quadrupole moment of the 6− isomeric state in 66Cu to be |Qs|=18.6(12) efm2. This state results from a weak coupling of the πp3/2 and the νg9/2 orbitals, which lead to sizable deformation at oblate and prolate shapes, correspondingly, in the 68Ni region. The interplay between these two different deformation-driving orbitals is observed at N=37 for the 6− state resulting in a most probable oblate shape

    Unexpected high-energy γ emission from decaying exotic nuclei

    Get PDF
    Abstract The N = 52 Ga 83 β decay was studied at ALTO. The radioactive 83Ga beam was produced through the ISOL photofission technique and collected on a movable tape for the measurement of γ-ray emission following β decay. While β-delayed neutron emission has been measured to be 56–85% of the decay path, in this experiment an unexpected high-energy 5–9 MeV γ-ray yield of 16(4)% was observed, coming from states several MeVs above the neutron separation threshold. This result is compared with cutting-edge QRPA calculations, which show that when neutrons deeply bound in the core of the nucleus decay into protons via a Gamow–Teller transition, they give rise to a dipolar oscillation of nuclear matter in the nucleus. This leads to large electromagnetic transition probabilities which can compete with neutron emission, thus affecting the β-decay path. This process is enhanced by an excess of neutrons on the nuclear surface and may thus be a common feature for very neutron-rich isotopes, challenging the present understanding of decay properties of exotic nuclei
    corecore