19 research outputs found

    Nighttime mesospheric ozone enhancements during the 2002 southern hemispheric major stratospheric warming

    Get PDF
    Sudden Stratospheric Warmings (SSW) affect the chemistry and dynamics of the middle atmosphere. Major warmings occur roughly every second winter in the Northern Hemisphere (NH), but has only been observed once in the Southern Hemisphere (SH), during the Antarctic winter of 2002. Observations by the Global Ozone Monitoring by Occultation of Stars (GOMOS, an instrument on board Envisat) during this rare event, show a 40% increase of ozone in the nighttime secondary ozone layer at subpolar latitudes compared to non-SSW years. This study investigates the cause of the mesospheric nighttime ozone increase, using the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model with specified dynamics (SD-WACCM). The 2002 SH winter was characterized by several reductions of the strength of the polar night jet in the upper stratosphere before the jet reversed completely, marking the onset of the major SSW. At the time of these wind reductions, corresponding episodic increases can be seen in the modelled nighttime secondary ozone layer. This ozone increase is attributed largely to enhanced upwelling and the associated cooling of the altitude region in conjunction with the wind reversal. This is in correspondence to similar studies of SSW induced ozone enhancements in NH. But unlike its NH counterpart, the SH secondary ozone layer appeared to be impacted less by episodic variations in atomic hydrogen. Seasonally decreasing atomic hydrogen plays however a larger role in SH compared to NH

    Modelling the descent of nitric oxide during the elevated stratopause event of January 2013

    Get PDF
    Using simulations with a whole-atmosphere chemistry-climate model nudged by meteorological analyses, global satellite observations of nitrogen oxide (NO) and water vapour by the Sub-Millimetre Radiometer instrument (SMR), of temperature by the Microwave Limb Sounder (MLS), as well as local radar observations, this study examines the recent major stratospheric sudden warming accompanied by an elevated stratopause event (ESE) that occurred in January 2013. We examine dynamical processes during the ESE, including the role of planetary wave, gravity wave and tidal forcing on the initiation of the descent in the mesosphere-lower thermosphere (MLT) and its continuation throughout the mesosphere and stratosphere, as well as the impact of model eddy diffusion. We analyse the transport of NO and find the model underestimates the large descent of NO compared to SMR observations. We demonstrate that the discrepancy arises abruptly in the MLT region at a time when the resolved wave forcing and the planetary wave activity increase, just before the elevated stratopause reforms. The discrepancy persists despite doubling the model eddy diffusion. While the simulations reproduce an enhancement of the semi-diurnal tide following the onset of the 2013 SSW, corroborating new meteor radar observations at high northern latitudes over Trondheim (63.4∘^{\circ}N), the modelled tidal contribution to the forcing of the mean meridional circulation and to the descent is a small portion of the resolved wave forcing, and lags it by about ten days

    HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008-2009

    Get PDF
    We compare simulations from three high-top (with upper lid above 120 km) and five medium-top (with upper lid around 80 km) atmospheric models with observations of odd nitrogen (NOx  =  NO + NO2), temperature, and carbon monoxide from seven satellite instruments (ACE-FTS on SciSat, GOMOS, MIPAS, and SCIAMACHY on Envisat, MLS on Aura, SABER on TIMED, and SMR on Odin) during the Northern Hemisphere (NH) polar winter 2008/2009. The models included in the comparison are the 3-D chemistry transport model 3dCTM, the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the modelling tools for SOlar Climate Ozone Links studies (SOCOL and CAO-SOCOL), and the Whole Atmosphere Community Climate Model (WACCM4). The comparison focuses on the energetic particle precipitation (EPP) indirect effect, that is, the polar winter descent of NOx largely produced by EPP in the mesosphere and lower thermosphere. A particular emphasis is given to the impact of the sudden stratospheric warming (SSW) in January 2009 and the subsequent elevated stratopause (ES) event associated with enhanced descent of mesospheric air. The chemistry climate model simulations have been nudged toward reanalysis data in the troposphere and stratosphere while being unconstrained above. An odd nitrogen upper boundary condition obtained from MIPAS observations has further been applied to medium-top models. Most models provide a good representation of the mesospheric tracer descent in general, and the EPP indirect effect in particular, during the unperturbed (pre-SSW) period of the NH winter 2008/2009. The observed NOx descent into the lower mesosphere and stratosphere is generally reproduced within 20 %. Larger discrepancies of a few model simulations could be traced back either to the impact of the models\u27 gravity wave drag scheme on the polar wintertime meridional circulation or to a combination of prescribed NOx mixing ratio at the uppermost model layer and low vertical resolution. In March–April, after the ES event, however, modelled mesospheric and stratospheric NOx distributions deviate significantly from the observations. The too-fast and early downward propagation of the NOx tongue, encountered in most simulations, coincides with a temperature high bias in the lower mesosphere (0.2–0.05 hPa), likely caused by an overestimation of descent velocities. In contrast, upper-mesospheric temperatures (at 0.05–0.001 hPa) are generally underestimated by the high-top models after the onset of the ES event, being indicative for too-slow descent and hence too-low NOx fluxes. As a consequence, the magnitude of the simulated NOx tongue is generally underestimated by these models. Descending NOx amounts simulated with medium-top models are on average closer to the observations but show a large spread of up to several hundred percent. This is primarily attributed to the different vertical model domains in which the NOx upper boundary condition is applied. In general, the intercomparison demonstrates the ability of state-of-the-art atmospheric models to reproduce the EPP indirect effect in dynamically and geomagnetically quiescent NH winter conditions. The encountered differences between observed and simulated NOx, CO, and temperature distributions during the perturbed phase of the 2009 NH winter, however, emphasize the need for model improvements in the dynamical representation of elevated stratopause events in order to allow for a better description of the EPP indirect effect under these particular conditions

    Caractérisation et Climatologie des Nuages Mésosphériques Polaires d'après les mesures de l'instrument GOMOS/ENVISAT

    No full text
    Noctilucent clouds, also called polar mesospheric clouds (PMC) when observed from space, are the visible manifestation of water ice particles persistently present near the summer mesopause at high latitudes, which is the coldest place on Earth. Because of their extraordinary height of about 83 km, at the edge of space, they can become visible to the naked eye when the sun sinks below the horizon, providing a dazzling display of bluish light. Since these clouds are extremely sensitive to changes in their environment, their observation conveys unique information concerning the various chemical and dynamical processes taking place in the mesosphere. GOMOS is a stellar occultation instrument combining 4 spectrometers in the spectral range 250 to 950 nm (UV-vis- near IR) and 2 fast photometers (470-520nm and 650-700nm). On the day side, in addition to star light, GOMOS measures also the solar light scattered by the atmospheric molecules. In the summer polar days, PMC are clearly detected using the photometers signals. The sun-synchronous orbit of ENVISAT allows observing them in both hemispheres. The main properties of these clouds (occurrence frequency, altitude, radiance) have been retrieved from GOMOS data. A very high accuracy is possible thanks to the solar occultation technique. Moreover, the observation of these clouds with the spectrometers provides the spectral dependence of the light scattered by the PMC particles, from which it is possible to derive their radii. A comprehensive climatology of all these properties has been established throughout 8 years, from 2002 to 2010.Les nuages noctulescents, également appelés nuages mésosphériques polaires (PMC) lorsqu'ils sont observés depuis l'espace, sont la manifestation visible de petits cristaux de glace d'eau pré- sents en permanence dans la région de la mésopause, l'été à hautes latitudes. Il s'agit de l'endroit le plus froid que l'on peut trouver sur Terre. En raison de l'extraordinaire altitude à laquelle ils se forment (∼83 km), à la frontière de l'espace, ils illuminent le ciel nocturne après le coucher du Soleil. De plus, leur grande sensibilité aux changements subis par leur environnement fait de ces nuages d'excellents traceurs des processus dynamiques et chimiques complexes qui contrôlent la mésosphère. GOMOS est un instrument dont le fonctionnement est basé sur la technique de l'occultation stellaire. Il est constitué de 4 spectromètres qui opèrent sur un large domaine spec- tral (UV-vis-proche IR), et de 2 photomètres à haute fréquence d'échantillonnage (470-520nm et 650-700nm). Lors des observations de jour, en plus de la lumière de l'étoile, GOMOS mesure aussi la lumière solaire diffusée par les molécules de l'atmosphère. L'été, au-dessus des pôles, les PMC peuvent être détectés de manière précise à partir du signal enregistré par les photomètres. L'orbite héliosynchrone d'ENVISAT permet de les observer dans les deux hémisphères. Les principales pro- priétés de ces nuages (fréquence d'occurrence, altitude, luminance) ont ainsi pu être déterminées. De plus, leur observation avec les spectromètres permet de connaître la dépendance spectrale des particules qui les constituent, à partir de laquelle il est possible de déterminer leur rayon. Une climatologie complète de tous ces paramètres a été établie tout au long de 8 années de mesure, de 2002 à 2010

    Impact of the major SSWs of February 2018 and January 2019 on the middle atmospheric nitric oxide abundance

    Get PDF
    The Arctic middle atmosphere was affected by major sudden stratospheric warmings (SSW) in February 2018 and January 2019, respectively. In this article, we report for the first time the impact of these two events on the middle atmospheric nitric oxide (NO) abundance. The study is based on measurements obtained during two dedicated observation campaigns, using the Sub-Millimetre Radiometer (SMR) aboard the Odin satellite, measuring NO globally since 2003. The SSW of February 2018 was similar to other, more dynamically quiet, Arctic winters in term of NO downward transport from the upper mesosphere–lower thermosphere to lower altitudes (referred to as energetic particle precipitation indirect effect EPP-IE). On the contrary, the event of January 2019 led to one of the strongest EPP-IE cases observed within the Odin operational period. Important positive NO anomalies were indeed observed in the lower mesosphere–upper stratosphere during the three months following the SSW onset, corresponding to NO volume mixing ratios more than 50 times higher than the climatological values. These different consequences on the middle atmospheric composition are explained by very different dynamical characteristics of these two SSW events

    NLC Climatology from GOMOS Observations

    No full text
    Noctilucent clouds (NLC), also called polar mesospheric clouds when observed from space, are the visible manifestation of water ice particles persistently present in the polar summer mesopause region, which is the coldest place on Earth. Because of their extraordinary height of about 83 km, they can become visible to the naked eye when the sun sinks below the horizon, providing a dazzling display of bluish light. Since these clouds are extremely sensitive to changes in their environment, their observation conveys unique information concerning the various processes taking place in the mesosphere. GOMOS is a stellar occultation instrument combining 4 spectrometers in the spectral range 250 to 950 nm (UV - visible - near IR) and 2 fast photometers (470-520 nm and 650-700 nm). On the day side, in addition to star light, GOMOS measures also the solar light scattered by the atmospheric molecules. In the summer polar days, NLC are clearly detected using the photometers signals. The sun-synchronous orbit of ENVISAT allows observing them in both hemispheres. The main properties of these clouds (occurrence frequency, radiance, altitude) have been retrieved from GOMOS data. A very high accuracy is possible thanks to the stellar occultation technique. Moreover, the observation of these clouds with the spectrometers provides the spectral dependence of the light scattered by the NLC particles, from which it is possible to derive their radii. These clouds at the edge of space have been studied using GOMOS data from 2002 to 2010. After a brief overview of retrieval methods, the climatology obtained for the main NLC characteristics will be presented, focusing on the seasonal and latitudinal coverage

    Simultaneous lidar observations of the water vapor and ozone signatures of a stratospheric intrusion during the MOHAVE-2009 campaign

    No full text
    International audienceOzone and water vapor signatures of a stratospheric intrusion were simultaneously observed by the Jet Propulsion Laboratory lidars located at Table Mountain Facility, California (TMF, 34.4N, 117.7W) during the Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE-2009) campaign in October 2009. These observations are placed in the context of the meridional displacement and folding of the tropopause, and resulting contrast in the properties of the air masses sampled by lidar. The lidar observations are supported by model data, specifically potential vorticity fields advected by the high-resolution transport model MIMOSA, and by 10-day backward isentropic trajectories. The ozone and water vapor anomalies measured by lidar were largely anti-correlated, and consistent with the assumption of a wet and ozone-poor subtropical upper troposphere, and a dry and ozone-rich extra-tropical lowermost stratosphere. However, it is shown that this anti-correlation relation collapsed just after the stratospheric intrusion event of October 20, suggesting mixed air embedded along the subtropical jet stream and sampled by lidar during its displacement south of TMF (tropopause fold). The ozone-PV expected positive correlation relation held strongly throughout the measurement period, including when a lower polar stratospheric filament passed over TMF just after the stratospheric intrusion. The numerous highly-correlated signatures observed during this event demonstrate the strong capability of the water vapor and ozone lidars at TMF, and provide new confidence in the future detection by lidar of long-term variability of water vapor and ozone in the Upper Troposphere-Lower Stratosphere (UTLS)

    Simultaneous lidar observations of the water vapor and ozone signatures of a stratospheric intrusion during the MOHAVE-2009 campaign

    No full text
    International audienceOzone and water vapor signatures of a stratospheric intrusion were simultaneously observed by the Jet Propulsion Laboratory lidars located at Table Mountain Facility, California (TMF, 34.4N, 117.7W) during the Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE-2009) campaign in October 2009. These observations are placed in the context of the meridional displacement and folding of the tropopause, and resulting contrast in the properties of the air masses sampled by lidar. The lidar observations are supported by model data, specifically potential vorticity fields advected by the high-resolution transport model MIMOSA, and by 10-day backward isentropic trajectories. The ozone and water vapor anomalies measured by lidar were largely anti-correlated, and consistent with the assumption of a wet and ozone-poor subtropical upper troposphere, and a dry and ozone-rich extra-tropical lowermost stratosphere. However, it is shown that this anti-correlation relation collapsed just after the stratospheric intrusion event of October 20, suggesting mixed air embedded along the subtropical jet stream and sampled by lidar during its displacement south of TMF (tropopause fold). The ozone-PV expected positive correlation relation held strongly throughout the measurement period, including when a lower polar stratospheric filament passed over TMF just after the stratospheric intrusion. The numerous highly-correlated signatures observed during this event demonstrate the strong capability of the water vapor and ozone lidars at TMF, and provide new confidence in the future detection by lidar of long-term variability of water vapor and ozone in the Upper Troposphere-Lower Stratosphere (UTLS)

    Two mechanisms of stratospheric ozone loss in the Northern Hemisphere, studied using data assimilation of Odin/SMR atmospheric observations

    Get PDF
    Observations from the Odin/Sub-Millimetre Radiometer (SMR) instrument have been assimilated into the DIAMOND model (Dynamic Isentropic Assimilation Model for OdiN Data), in order to estimate the chemical ozone (O3) loss in the stratosphere. This data assimilation technique is described in Sagi and Murtagh (2016), in which it was used to study the inter-annual variability in ozone depletion during the entire Odin operational time and in both hemispheres. Our study focuses on the Arctic region, where two O3 destruction mechanisms play an important role, involving halogen and nitrogen chemical families (i.e. NOx  =  NO and NO2), respectively. The temporal evolution and geographical distribution of O3 loss in the low and middle stratosphere have been investigated between 2002 and 2013. For the first time, this has been done based on the study of a series of winter–spring seasons over more than a decade, spanning very different dynamical conditions. The chemical mechanisms involved in O3 depletion are very sensitive to thermal conditions and dynamical activity, which are extremely variable in the Arctic stratosphere. We have focused our analysis on particularly cold and warm winters, in order to study the influence this has on ozone loss. The winter 2010/11 is considered as an example for cold conditions. This case, which has been the subject of many studies, was characterised by a very stable vortex associated with particularly low temperatures, which led to an important halogen-induced O3 loss occurring inside the vortex in the lower stratosphere. We found a loss of 2.1 ppmv at an altitude of 450 K in the end of March 2011, which corresponds to the largest ozone depletion in the Northern Hemisphere observed during the last decade. This result is consistent with other studies. A similar situation was observed during the winters 2004/05 and 2007/08, although the amplitude of the O3 destruction was lower. To study the opposite situation, corresponding to a warm and unstable winter in the stratosphere, we performed a composite calculation of four selected cases, 2003/04, 2005/06, 2008/09 and 2012/13, which were all affected by a major mid-winter sudden stratospheric warming event, related to particularly high dynamical activity. We have shown that such conditions were associated with low O3 loss below 500 K (approximately 20 km), while O3 depletion in the middle stratosphere, where the role of NOx-induced destruction processes prevails, was particularly important. This can mainly be explained by the horizontal mixing of NOx-rich air from lower latitudes with vortex air that takes place in case of strongly disturbed dynamical situation. In this manuscript, we show that the relative contribution of O3 depletion mechanisms occurring in the lower or in the middle stratosphere is significantly influenced by dynamical and thermal conditions. We provide confirmation that the O3 loss driven by nitrogen oxides and triggered by stratospheric warmings can outweigh the effects of halogens in the case of a dynamically unstable Arctic winter. This is the first time that such a study has been performed over a long period of time, covering more than 10 years of observations
    corecore