40 research outputs found

    Twinning system selection in a metastable β-titanium alloy by Schmid factor analysis

    No full text
    International audienceElectron backscattering diffraction and Schmid factor analysis were used to study the twinning variant selection in a Ti-25Ta-24Nb (mass%) metastable β-titanium alloy. The two twinning systems {1 1 2}〈1 1 1〉 and {3 3 2}〈1 1 3〉 were observed. For each system the Schmid factor was shown to be a relevant parameter to determine the activated variant. Moreover, selection between the two twinning systems depends on the crystallographic orientation of the grain with respect to the tensile direction

    Zinc-gallium oxynitride powders: effect of the oxide precursor synthesis route

    No full text
    International audienceZinc-gallium oxynitride powders (ZnGaON) were synthesized by nitridation of ZnGa2O4 oxide precursor obtained by polymeric precursors (PP) and solid state reaction (SSR) methods and the influence of the synthesis route of ZnGa2O4 on the final compound ZnGaON was investigated. Crystalline single phase ZnGa2O4 was obtained at 1100 oC / 12 h by SSR and at 600 oC / 2 h by PP with different grain sizes and specific surface areas according to the synthesis route. After nitridation, ZnGaON oxynitrides with a GaN würtzite-type structure were obtained in both cases, however at lower temperatures for PP samples. The microstructure and the specific surface area were strongly dependent on the oxide synthesis method and on the nitridation temperature (42 m2g-1 and 5 m2g-1 for PP and SSR oxides treated at 700 °C, respectively). The composition analyses showed a strong loss of Zn for the PP samples, favored by the increase of ammonolysis temperature and by the higher specific surface area

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Development and Maturation of Embryonic Cortical Neurons Grafted into the Damaged Adult Motor Cortex

    Get PDF
    International audienceInjury to the human central nervous system can lead to devastating consequences due to its poor ability to self-repair. Neural transplantation aimed at replacing lost neurons and restore functional circuitry has proven to be a promising therapeutical avenue. We previously reported in adult rodent animal models with cortical lesions that grafted fetal cortical neurons could effectively re-establish specific patterns of projections and synapses. The current study was designed to provide a detailed characterization of the spatio-temporal in vivo development of fetal cortical transplanted cells within the lesioned adult motor cortex and their corresponding axonal projections. We show here that as early as 2 weeks after grafting, cortical neuroblasts transplanted into damaged adult motor cortex developed appropriate projections to cortical and subcortical targets. Grafted cells initially exhibited characteristics of immature neurons, which then differentiated into mature neurons with appropriate cortical phenotypes where most were glutamatergic and few were GABAergic. All cortical subtypes identified with the specific markers CTIP2, Cux1, FOXP2, and Tbr1 were generated after grafting as evidenced with BrdU co-labeling. The set of data provided here is of interest as it sets biological standards for future studies aimed at replacing fetal cells with embryonic stem cells as a source of cortical neurons

    Synthesis of Cu2Mo6S8 powders and thin films from intermediate oxides prepared by polymeric precursor method

    No full text
    International audiencePowders and thin films of the copper molybdenum sulfide Cu2Mo6S8 were synthesized from intermediate oxides prepared by polymeric precursor method based on Pechini process. In the case of the thin films, deposition was performed onto R-plane sapphire single crystal by spin coating. The influence of temperature and duration of the 3 step heat treatment cycle (calcination, sulfurization and reduction) were investigated to optimize the synthesis conditions. The first step of calcination under air atmosphere performed for 3 h at 450 °C and 400 °C is suitable to obtain the intermediate oxides powders and thin films, respectively. The sulfurization treatment at 600 °C for 2 h under H2S/H2 gas flow followed by reduction at 650 °C for 4 h under H2 gas flow allowed to obtain Cu2Mo6S8 in powder or thin film form. In the last case, a multilayer process led to dense and homogeneous films. Moreover, the insertion and superconducting behaviour of the final powders allowed to validate the Cu2Mo6S8 synthesis by this moderate temperature process

    Dopamine control of pyramidal neuron activity in the primary motor cortex via D2 receptors

    Get PDF
    International audienceThe primary motor cortex (M1) is involved in fine voluntary movements control. Previous studies have shown the existence of a dopamine (DA) innervation in M1 of rats and monkeys that could directly modulate M1 neuronal activity. However, none of these studies have described the precise distribution of DA terminals within M1 functional region nor have quantified the density of this innervation. Moreover, the precise role of DA on pyramidal neuron activity still remains unclear due to conflicting results from previous studies regarding D2 effects on M1 pyramidal neurons. In this study we assessed in mice the neuroanatomical characteristics of DA innervation in M1 using unbiased stereological quantification of DA transporter-immunostained fibers. We demonstrated for the first time in mice that DA innervates the deep layers of M1 targeting preferentially the forelimb representation area of M1. To address the functional role of the DA innervation on M1 neuronal activity, we performed electrophysiological recordings of single neurons activity in vivo and pharmacologically modulated D2 receptor activity. Local D2 receptor activation by quinpirole enhanced pyramidal neuron spike firing rate without changes in spike firing pattern. Altogether, these results indicate that DA innervation in M1 can increase neuronal activity through D2 receptor activation and suggest a potential contribution to the modulation of fine forelimb movement. Given the demonstrated role for DA in fine motor skill learning in M1, our results suggest that altered D2 modulation of M1 activity may be involved in the pathophysiology of movement disorders associated with disturbed DA homeostasis

    Rat Hepatitis E Virus: Presence in Humans in South-Western France?

    No full text
    International audienceBackground: Hepatitis E Virus (HEV) is one of the most common causes of hepatitis worldwide, and South-Western France is a high HEV seroprevalence area. While most cases of HEV infection are associated with the species Orthohepevirus-A, several studies have reported a few cases of HEV infections due to Orthohepevirus-C (HEV-C) that usually infects rats. Most of these human cases have occurred in immunocompromised patients. We have screened for the presence of HEV-C in our region. Methods and Results: We tested 224 sera, mostly from immunocompromised patients, for HEV-C RNA using an in-house real time RT-PCR. Liver function tests gave elevated results in 63% of patients: mean ALT was 159 IU/L (normal &lt; 40 IU/L). Anti-HEV IgG (49%) and anti-HEV IgM (9.4%) were frequently present but none of the samples tested positive for HEV-C RNA. Conclusion: HEV-C does not circulate in the human population of South-Western France, despite the high seroprevalence of anti-HEV IgG
    corecore