2,384 research outputs found

    A dark energy multiverse

    Get PDF
    We present cosmic solutions corresponding to universes filled with dark and phantom energy, all having a negative cosmological constant. All such solutions contain infinite singularities, successively and equally distributed along time, which can be either big bang/crunchs or big rips singularities. Classicaly these solutions can be regarded as associated with multiverse scenarios, being those corresponding to phantom energy that may describe the current accelerating universe

    Reconstructing the origins and the biogeography of species’ genomes in the highly reticulate allopolyploid-rich model grass genus Brachypodium using minimum evolution, coalescence and maximum likelihood approaches

    Get PDF
    The identification of homeologous genomes and the biogeographical analyses of highly reticulate allopolyploid-rich groups face the challenge of incorrectly inferring the genomic origins and the biogeographical patterns of the polyploids from unreliable strictly bifurcating trees. Here we reconstruct a plausible evolutionary scenario of the diverging and merging genomes inherited by the diploid and allopolyploid species and cytotypes of the model grass genus Brachypodium. We have identified the ancestral Brachypodium genomes and inferred the paleogeographical ranges for potential hybridization events that originated its allopolyploid taxa. We also constructed a comprehensive phylogeny of Brachypodium from five nuclear and plastid genes using Species Tree Minimum Evolution allele grafting and Species Network analysis. The divergence ages of the lineages were estimated from a consensus maximum clade credibility tree using fossil calibrations, whereas ages of origin of the diploid and allopolyploid species were inferred from coalescence Bayesian methods. The biogeographical events of the genomes were reconstructed using a stratified Dispersal-Extinction-Colonization model with three temporal windows. Our combined Minimum Evolution-coalescence-Bayesian approach allowed us to infer the origins and the identities of the homeologous genomes of the Brachypodium allopolyploids, matching the expected ploidy levels of the hybrids. To date, the current extant progenitor genomes (species) are only known for B. hybridum. Putative ancestral homeologous genome have been inherited by B. mexicanum, ancestral and recent genomes by B. boissieri, and only recently evolved genomes by B. retusum and the core perennial clade allopolyploids (B. phoenicoides, B. pinnatum 4x, B. rupestre 4x). We dissected the complex spatio-temporal evolution of ancestral and recent genomes and have detected successive splitting, dispersal and merging events for dysploid homeologous genomes in diverse geographical scenarios that have led to the current extant taxa. Our data support Mid-Miocene splits of the Holarctic ancestral genomes that preceded the Late Miocene origins of Brachypodium ancestors of the modern diploid species. Successive divergences of the annual B. stacei and B. distachyon diploid genomes were implied to have occurred in the Mediterranean region during the Late Miocene-Pliocene. By contrast, a profusion of splits, range expansions and different genome mergings were inferred for the perennial diploid genomes in the Mediterranean and Eurasian regions, with sporadic colonizations and further mergings in other continents during the Quaternary. A reliable biogeographical scenario was obtained for the Brachypodium genomes and allopolyploids where homeologous genomes split from their respective diploid counterpart lineages in the same ancestral areas, showing similar or distinct dispersals. By contrast, the allopolyploid taxa remained in the same ancestral ranges after hybridization and genome doubling events. Our approach should have utility in deciphering the genomic composition and the historical biogeography of other allopolyploid-rich organismal groups, which are predominant in eukaryotes

    Decoherence in an accelerated universe

    Get PDF
    In this paper we study the decoherence processes of the semiclassical branches of an accelerated universe due to their interaction with a scalar field with given mass. We use a third quantization formalism to analyze the decoherence between two branches of a parent universe caused by their interaction with the vaccum fluctuations of the space-time, and with other parent unverses in a multiverse scenario.Comment: 11 pages, 2 figure

    Diffusion dynamics on multiplex networks

    Get PDF
    We study the time scales associated to diffusion processes that take place on multiplex networks, i.e. on a set of networks linked through interconnected layers. To this end, we propose the construction of a supra-Laplacian matrix, which consists of a dimensional lifting of the Laplacian matrix of each layer of the multiplex network. We use perturbative analysis to reveal analytically the structure of eigenvectors and eigenvalues of the complete network in terms of the spectral properties of the individual layers. The spectrum of the supra-Laplacian allows us to understand the physics of diffusion-like processes on top of multiplex networks.Comment: 6 Pages including supplemental material. To appear in Physical Review Letter

    Ballistic resistivity in aluminum nanocontacts

    Get PDF
    One of the major industrial challenges is to profit from some fascinating physical features present at the nanoscale. The production of dissipationless nanoswitches (or nanocontacts) is one of such attractive applications. Nevertheless, the lack of knowledge of the real efficiency of electronic ballistic/non dissipative transport limits future innovations. For multi-valent metallic nanosystems -where several transport channels per atom are involved- the only experimental technique available for statistical transport characterization is the conductance histogram. Unfortunately its interpretation is difficult because transport and mechanical properties are intrinsically interlaced. We perform a representative series of semiclassical molecular dynamics simulations of aluminum nanocontact breakages, coupled to full quantum conductance calculations, and put in evidence a linear relationship between the conductance and the contact minimum cross-section for the geometrically favored aluminum nanocontact configurations. Valid in a broad range of conductance values, such relation allows the definition of a transport parameter for nanomaterials, that represents the novel concept of ballistic resistivity

    Symmetries and Fixed Point Stability of Stochastic Differential Equations Modeling Self-Organized Criticality

    Get PDF
    A stochastic nonlinear partial differential equation is built for two different models exhibiting self-organized criticality, the Bak, Tang, and Wiesenfeld (BTW) sandpile model and the Zhang's model. The dynamic renormalization group (DRG) enables to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.Comment: 19 pages, RevTex, includes 6 PostScript figures, Phys. Rev. E (March 97?

    Magnetic field production during preheating at the electroweak scale

    Full text link
    We study the generation of magnetic fields during preheating within an scenario of hybrid inflation at the electroweak (EW) scale. We find that the non-perturbative and strongly out-of-equilibrium process of magnetic field production occurs along the lines predicted by Vachaspati many years ago. The system starts in the false vacuum at the end of inflation, and very quickly the initial quantum fluctuations of the Higgs field get amplified via long wavelength spinodal instabilities. The subsequent nucleation of the random Gaussian Higgs field bubbles (lumps) leads to EW symmetry breaking, and to the creation of ZZ-strings, which soon decay, along with longwave magnetic flux tubes with nontrivial helicity. The intensity and scales in these helical magnetic fields are consistent with their later development into the microgauss fields observed in galaxies and clusters of galaxies.Comment: 4 pages, 6 figures, uses revtex
    corecore