We study the time scales associated to diffusion processes that take place on
multiplex networks, i.e. on a set of networks linked through interconnected
layers. To this end, we propose the construction of a supra-Laplacian matrix,
which consists of a dimensional lifting of the Laplacian matrix of each layer
of the multiplex network. We use perturbative analysis to reveal analytically
the structure of eigenvectors and eigenvalues of the complete network in terms
of the spectral properties of the individual layers. The spectrum of the
supra-Laplacian allows us to understand the physics of diffusion-like processes
on top of multiplex networks.Comment: 6 Pages including supplemental material. To appear in Physical Review
Letter