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Abstract 

The identification of homeologous genomes and the biogeographical analyses of highly 

reticulate allopolyploid-rich groups face the challenge of incorrectly inferring the 

genomic origins and the biogeographical patterns of the polyploids from unreliable 

strictly bifurcating trees. Here we reconstruct a plausible evolutionary scenario of the 

diverging and merging genomes inherited by the diploid and allopolyploid species and 

cytotypes of the model grass genus Brachypodium. We have identified the ancestral 

Brachypodium genomes and inferred the paleogeographical ranges for potential 

hybridization events that originated its allopolyploid taxa. We also constructed a 

comprehensive phylogeny of Brachypodium from five nuclear and plastid genes using 

Species Tree Minimum Evolution allele grafting and Species Network analysis.  The 

divergence ages of the lineages were estimated from a consensus maximum clade 

credibility tree using fossil calibrations, whereas ages of origin of the diploid and 

allopolyploid species were inferred from coalescence Bayesian methods. The 

biogeographical events of the genomes were reconstructed using a stratified  Dispersal-

Extinction-Colonization model with three temporal windows. Our combined Minimum 

Evolution-coalescence-Bayesian approach allowed us to infer the origins and the 

identities of the homeologous genomes of the Brachypodium allopolyploids, matching 

the expected ploidy levels of the hybrids. To date, the current extant progenitor 

genomes (species) are only known for B. hybridum. Putative ancestral homeologous 

genome have been inherited by B. mexicanum, ancestral and recent genomes by B. 

boissieri, and only recently evolved genomes by B. retusum and the core perennial clade 

allopolyploids (B. phoenicoides, B. pinnatum 4x, B. rupestre 4x). We dissected the 

complex spatio-temporal evolution of ancestral and recent genomes and have detected 

successive splitting, dispersal and merging events for dysploid homeologous genomes 

in diverse geographical scenarios that have led to the current extant taxa. Our data 
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support Mid-Miocene splits of the Holarctic ancestral genomes that preceded the Late 

Miocene origins of Brachypodium ancestors of the modern diploid species. Successive 

divergences of the annual B. stacei and B. distachyon diploid genomes were implied to 

have occurred in the Mediterranean region during the Late Miocene-Pliocene. By 

contrast, a profusion of splits, range expansions and different genome mergings were 

inferred for the perennial diploid genomes in the Mediterranean and Eurasian regions, 

with sporadic colonizations and further mergings in other continents during the 

Quaternary. A reliable biogeographical scenario was obtained for the Brachypodium 

genomes and allopolyploids where homeologous genomes split from their respective 

diploid counterpart lineages in the same ancestral areas, showing similar or distinct 

dispersals. By contrast, the allopolyploid taxa remained in the same ancestral ranges 

after hybridization and genome doubling events.  Our approach should have utility in 

deciphering the genomic composition and the historical biogeography of other 

allopolyploid-rich organismal groups, which are predominant in eukaryotes. 

 

 

Keywords: divergence times (lineages) and coalescence ages (allopolyploids), genomic 

biogeography, grafted species tree and species network, homeologous genomes, model 

Brachypodium grasses, reticulate historical scenarios. 
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1. Introduction 

Phylogenetic and biogeographical studies of highly reticulate allopolyploid plant 

groups have been severely hampered by the difficulty or impossibility of reconstructing 

bifurcated tree-like topologies from genome-mergers and genome-doubled species, 

which render network-like phylogenies (Jones et al., 2013; Marcussen et al., 2015). In 

grasses, where allopolyploids account for 70% of the current species (Kellogg, 2015a; 

Stebbins, 1949), comparative genomic studies support the existence of an ancient 

Whole Genome Duplication (WGD) event, estimated to have occurred ca. 90 Mega 

annum (Ma) (Salse et al., 2008). The return to the diploid state was followed by new 

polyploidizations, leading to the rise of meso- and neo-polyploids, which originated in 

the Early-Mid Neogene and the Quaternary, respectively (Stebbins, 1985). Though the 

role of allopolyploidy in species diversification has been extensively debated (Soltis and 

Soltis, 2016; Soltis et al., 2014), there is general agreement on the importance of this 

mechanism and its preeminence in some angiosperm lineages (Brysting et al., 2007; 

Marcussen et al., 2015). Most allopolyploids have experienced multiple recurrent 

origins from different parental populations (Soltis et al., 2014). In some instances, 

similar directional crosses led to distinct allopolyploid grass speciation events (e. g.,  

Aegilops; Meimberg et al., 2009), whereas in others all sorts of bidirectional crosses led 

to the same speciation outcome (e. g., Brachypodium hybridum; López-Álvarez et al., 

2017).   

Brachypodium has received considerable attention since the selection of the 

annual B. distachyon as model functional plant for temperate cereals and biofuel grasses 

(Mur et al., 2011; Vogel et al., 2010) and of its three annual species as a model group 

for allopolyploid speciation (Catalán et al., 2014; Gordon et al., 2016). This genus, 

characterized by its small-size and compact genomes (Betekhtin et al., 2014), is an ideal 
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model for comparative genomics of monocots (Kellogg, 2015b). Brachypodium belongs 

to the monotypic tribe Brachypodieae and contains between 18 and 20 taxa (Catalán et 

al., 2016) (Fig. 1). Dated phylogenies of plastid and nuclear rDNA genes support a 

rapid and relatively recent radiation of the genus since the Mid-Miocene, showing the 

early divergences of annual and short-rhizomatose lineages and the recent split of the 

strong-rhizomatose core perennial lineages (Catalán et al., 2012). Phylogenetic trees 

reconstructed from single-copy nuclear genes supported this hypothesis, but also 

showed homeologous copies in all of the polyploid lineages studied to date (Catalán et 

al., 2012, 2016; Wolny et al., 2011).  

Alternative phylogenetic methods have been proposed to reconstruct and date 

the species network of reticulate allopolyploid groups, including comparative statistical 

analysis of diploid/polyploid multiple gene tree discordances (Cai et al., 2012) and 

dated allopolyploid network analysis (Marcussen et al., 2015). Other authors used 

multilabeled gene trees (Huber et al., 2006), with auto- and allo-polyploids represented 

by one or more tip leaves, respectively, to estimate the relative time of origin of 

homeologous genomes (Estep et al., 2014). However, some of these scenarios appear to 

be constrained for complex groups such as Brachypodium, where highly divergent 

homeologous genomes have been observed within single allopolyploids (Catalán et al., 

2016). This, in turn, suggests that putative Brachypodium ancestors could have evolved 

in different geographic locations.  

A preliminary evolutionary analysis of the Brachypodium taxa was performed in 

our previous work (Catalán et al., 2016). We grafted the polyploid alleles into a diploid 

species tree using a minimum evolution criterion aiming to draft a general scenario 

explaining the putative origins of the polyploid species. We observed four main 

placements of polyploid allelic copies in basal, stacei, distachyon and core perennial 
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clade branches, with some putative recent polyploids sharing also basal allelic copies. 

Nevertheless, statistical refinements are necessary to correct the excess of allelic copies 

grafted to different branches of the skeleton diploid species tree in order to properly 

infer the origins and the hybridization patterns of the homeologous genomes present in 

the allopolyploids.  

In this study we have incorporated a statistical treatment that corrects the excess 

of allelic copies by fusing closely related copies located in close branches. The main 

objectives were to identify the genome donors of the allopolyploids and to obtain a 

biogeographic scenario for the known taxa of Brachypodium. Homeologous genomes 

now merged in the allopolyploids could have arrived at their current geographic 

locations from different ancestral ranges historically occupied by diploid or low 

polyploid ancestors. Therefore, we decided to adopt a novel biogeographic approach 

that independently handles each homeologous genome with the aim of inferring its 

ancestry range and its time of divergence from its closest diploid lineage. This approach 

allowed us to reconstruct a chronogram that included all grafted heterologous copies of 

a polyploid species to inform the biogeographic analysis. This strategy is conceptually 

different from most current biogeographic studies, where typically a single genomic 

copy is selected for each polyploid species (Fougère-Danezan et al., 2015; Linder & 

Barker, 2014). 

Given these considerations, the objectives of our research were i) to incorporate 

statistical support for the allele grafting method to identify specific Brachypodium 

homoeologous genomes; ii) to reconstruct a robust explicit phylogenetic framework 

using a multigenic Species Network to disentangle the complex reticulate history of 

diploid and allopolyploid taxa, including all the identified genomic copies; iii) to build a 

dated chronogram for the multigenic allelic copies of Brachypodium; iv) to reconstruct 
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the historical biogeography of its genomes using parametric dispersion-extinction-

cladogenesis models, inferring the paleo-scenarios for the dispersals and merging of 

genomes; and v) to estimate the coalescence ages of polyploid genomes from their 

closest diploid relatives, identifying and dating the hybridization events that gave rise to 

the allopolyploid species and cytotypes.  

 

2. Materials and methods 

We used the data matrices generated by Catalán et al. (2016), although the data 

processing and the statistical methods used to reconstruct the diploid species tree and 

the grafting of polyploid alleles into this tree have been updated and are described in 

detail in this study. We have included new divergence time estimations, coalescence 

dating analysis and biogeographic methods. A general scheme of the analyses 

performed in this study is shown in Fig. 2. 

 

2.1. Sampling, DNA sequence data processing and haplotype networks 

Our sampling was designed to represent the taxonomic diversity and geographic 

distribution of Brachypodium taxa (Catalán et al., 2016) as well as the intraspecific 

cytotypic variability described for some perennial species (Betekhtin et al., 2014). A 

total of 110 ingroup samples representing the 17 recognized species plus one variety of 

Brachypodium were included (Fig. 1; Table A.1 and Appendix B.1). The outgroup 

species were represented by ancestral and recently evolved Pooideae (Melica ciliata, 

Glyceria declinata, Secale cereale, S. montanum, Festuca arundinacea, F. pratensis, 

and Lolium perenne). Oryza sativa (Oryzoideae) was included as external outgroup 

(BOP clade) and used to root the trees.  
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DNA sequences from three nuclear [rDNA ETS and ITS, and a single-copy 

GIGANTEA (GI)] and two plastid (ndhF, trnLF) loci were used to reconstruct the 

phylogeny of Brachypodium. The protocols used for DNA isolation, amplification, 

cloning and sequencing are described in Appendix B.2. Five clones per sample were 

used for each nuclear locus in both diploid and polyploid taxa, aiming to detect all 

potential copies. A total of 973 Brachypodium sequences were aligned with sequences 

retrieved from GenBank (Table A.1 and Appendix B.2). The final data sets consisted of 

431 sequences/682 aligned positions for ETS, 368/645 for ITS, 280/831 for GI, 95/564 

for ndhF, and 100/941 for trnLF. The non-recombinant ndhF + trnLF plastid (cpDNA) 

sequences were concatenated into a combined 105/1505 data set. In order to discard 

spurious variation generated from PCR or cloning artifacts, intraspecific consensus 

(type) sequences were generated following Díaz-Pérez et al. (2014). Closely related 

sequences of the same species that showed a p-distance lower than 0.01 base differences 

per site were collapsed into a consensus type sequence using MEGA v. 5 (Tamura et al., 

2011) and BIOEDIT v. 7.0.9.0 (Hall, 1999) (Table A.3 and Appendix B.2). The 

consensus types that were represented by a single clone were discarded. The haplotype 

networks were constructed using statistical parsimony (Clement et al., 2002) using 

POPART (Leigh and Bryant, 2015), with a 95% cut-off for the maximum number of 

mutational connections between pairs of sequences.  

 

2.2. Diploid species tree reconstruction 

A Bayesian diploid backbone species tree was constructed from consensus 

sequences (types) from each separate locus (Table A.3) with *BEAST v.2.1.3 

(Bouckaert et al., 2014), using Festuca pratensis to root the tree. All parameters were 

unlinked across loci to allocate different evolutionary models in the species tree 
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estimation.  Initially, we imposed nucleotide substitution models according to the 

selection of the best model based on the AIC criterion computed in MODELTEST v.3.4 

(Posada and Crandall, 1998), and the maximum likelihood test (LSet command) 

computed in PAUP* v.4.0b10 (Swofford, 2003), among alternative models and a strict 

molecular clock model. However, convergence of the MCMC chain for the four data 

sets could only be achieved after imposing the simple HKY85 substitution model and a 

strict molecular clock model. In these searches the evolutionary rate was set to 1.0, 

scaling node and root heights in units of mutations per site, and assuming a Yule birth 

tree prior. The MCMC was run twice for 500 million steps, logging parameters every 10 

thousand samples, and checking for convergence in TRACER v.1.6.0 (Rambaut et al., 

2014) with effective sample size (ESS) values above 200. Log-files were combined 

after discarding the first 50% of each sampling as burn-in. The posterior distribution of 

trees was summarized through a maximum clade credibility tree with 

TREEANNOTATOR v.2.1.2 and visualized with FIGTREE v.1.4.2 in the BEAST 

package (Bouckaert et al., 2014). 

 

2.3. Grafting polyploid alleles into the diploid species tree 

A modified procedure of Cai et al. (2012) was used to graft individual alleles of 

polyploid species to specific branches of the diploid species tree using the Minimum 

Evolution criterion. In this analysis, all polyploid and skeleton diploid alleles (used to 

generate the species tree) per locus were analyzed to construct a gene tree. Different 

pruned gene trees were generated by pruning all polyploid alleles except one, per 

analysis. This excluded allele was treated as missing in the remaining gene trees of the 

other three loci, which were solely composed of skeleton diploid alleles. Several 

integrated distance matrices were constructed by averaging distances between diploid 
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species from the four loci, but each time the process included single-locus internodal 

distances between the respective polyploid allele and diploid sequences. The distances 

were estimated by the average number of internodes between all pairs of tips from the 

gene trees. For diploid species, internode distances were averaged across all gene trees 

and all pairs of samples for each species-pair. This generated as many distance matrices 

as single-locus polyploid alleles were available. Distance matrices were calculated from 

maximum likelihood gene trees that were previously estimated through RAxML v.7.2.6 

(Stamatakis, 2006), using the R-package APE (Paradis et al., 2004). The rooted species 

tree of all diploid Brachypodium taxa had 15 branches after excluding the branch 

leading to the outgroup. To estimate the optimal placement(s) of the polyploid allele in 

this tree, each polyploid allele was inserted in every potential branch, rendering 15 

species trees per allele. The lengths of the trees were calculated according to the 

Minimum Evolution method implemented in FASTME (Desper and Gascuel, 2002), 

using the integrated distance matrices and fixing each of the 15 species trees per 

polyploid allele. A set of contiguous branches was selected as the optimal placement for 

each polyploid allele in the diploid tree. This set was defined as those branches whose 

associated tree lengths were contained in the lowermost 5% cutoff of the observed range 

of tree lengths. For each allele, this process was repeated 100 times from bootstrap 

pseudoreplicates, as indicated in Cai et al. (2012), giving bootstrap support for the 

contiguous range of branches where this allele was grafted. Non-overlapping ranges 

were treated as different sets of polyploid alleles. In B. mexicanum, two ranges partially 

overlapped, but each range showed a marked concentration of bootstrap placements in 

different branches of the tree. Each set of alleles was considered as a single putative 

homeologous genome. Homeologous genomes were classified depending on their 

topological proximity to counterpart diploid lineages in the tree.  
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2.4. Dating analysis 

We constructed a chronogram including all Brachypodium polyploid and diploid 

alleles using BEAST v.2.1.3. For this, we assumed that the origin of polyploid alleles 

was circumscribed to an interval of time delimited by the parent and child nodes of the 

specific branch of the species tree onto which these alleles were grafted. Consequently, 

the topology of the diploid species tree and the minimum evolution placement of each 

polyploid allele were fixed in this analysis. To fix a set of polyploid alleles to a single 

branch of the tree, we constrained in BEAST v.2.1.3 the monophyly of a group that 

included these alleles, plus all of the diploid and polyploid alleles previously nested in 

more recent branches. To graft the polyploid alleles onto the terminal branches of the 

species tree, they were constrained to a monophyletic group that also included the 

respective diploid species. Parameters were unlinked across the four loci using an 

optimal GTR+GAMMA substitution model. The MCMC and posterior distribution 

processing and summarizing were similar to those of the diploid species tree 

reconstruction, except that the MCMC was run five times for 100 million steps. 

The selection of tree priors were based on Bayes factors (BF) where Marginal 

Likelihood Estimators (MLE) were generated according to the Path-Sampling (PS) and 

Stepping-Stone (SS) methods as implemented in BEAST. The Uncorrelated Relaxed 

Clock (UCLD)-Birth-Death model was chosen over the UCLD-YULE with a PS and SS 

MLE of -13211.5 vs -13236.9 and -13211.6 vs -13237.0, respectively, yielding a 

decisive BF of 22.5 with both estimators. The Strict Clock tree prior did not reach 

convergence so we could not estimate BF to test them against UCLD models. MLE are 

highly influenced by prior distributions, but we did not detect any mismatch between 

simulated and theoretical prior distributions for multiple calibrated internal nodes (see 
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below), as suggested by Heled and Drummond (2012). Moreover, “the ucld.sdev” 

estimate obtained from UCLD models was clearly different from zero, indicating 

variability of branch rates, giving an indirect support to UCLD over the Strict prior. 

Because there are no described fossils of Brachypodium, we dated the more inclusive 

data sets. For this, we calibrated the crown node of the BOP clade imposing a secondary 

calibration of 54.9 ± 5.7 Ma (normal prior distribution) according to the family-wide 

analysis of Bouchenak-Khelladi et al. (2010). A pooid epidermal phytolith fossil from 

the Middle Eocene (Strömberg, 2011) provided a minimum age for the crown node of 

Pooideae of 48.4 Ma [log-normal prior distribution mean=3.88, stdev=0.05, 95% 

highest posterior density (HPD) interval 44.6 to 52.58 Ma].  

 

2.5. Divergence times of homeologous genomes and plausible ages of hybridization 

events 

We assumed that a homeologous Brachypodium genome diverged from an 

ancestral diploid parental lineage, represented by the current diploid closest relative(s) 

identified in the Minimum Evolution tree. Pairwise divergence times were computed 

using an “Isolation-with-Migration” model according to the Bayesian method of Hey 

and Nielsen (2004) implemented in the program IM v.3.5. The bidirectional migration 

rates and population size parameters were enforced to be the same in all cases. These 

parameters were used to simplify the model and to maintain agreement with the recent 

radiation observed for the Brachypodium clade lineages (Catalán et al., 2016, 2012). 

Population parameters were scaled by μ (the neutral mutation rate), the effective number 

of gene copies (Ne), the migration rate (M) and the divergence time (T). These 

parameters were estimated from the model parameters θ = 4Neμ, m = M/μ and t = Tμ. 

The estimated IM coalescent diverging times should not be confused with the estimated 
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*BEAST lineage diverging times; *BEAST estimates the relative divergence times of 

diploid genome lineages, whereas IM estimates the demographic divergence time of 

each homeologous genome from its diploid relative. Three simulations per pairwise 

divergence estimation between a homeologous genome and its counterpart diploid 

genome were performed with 2x106 burn-in and 3x106 iterations to check for 

convergence, in addition to ESS > 300. A total of 22x3=66 pairwise runs were 

performed (Table 1). Wide uniform priors were assigned in the first run to set 

appropriate limits for the priors of the two subsequent independent runs. There were a 

variable number of loci available for pairwise comparisons, ranging from one to four 

loci depending on the genome (Table 1). In this case, we suggest that most estimates 

should be taken as approximate values, despite the fact that convergence was achieved 

and the replicated runs generated similar values. Considering that homeologous 

genomes could never have originated before than their more recent genome donors, we 

equated the time of the putative hybridization event with the time of the origin of the 

most recent counterpart diploid genome.  

To transform model population parameters estimates into demographic units, the 

μ rates of the four loci were approximated through the estimation of substitution rates 

(K) using the program PARAT (Meyer and von Haeseler, 2003). This program included 

an iterative procedure to estimate the topology, branch lengths and site specific 

substitution rates. For each pair of sequences, the neutral mutation rate was estimated as 

μ = K/2TC, where TC is the coalescence time obtained from the BEAST chronogram 

(see above). Pairwise μ’s for consensus sequences located in different clades of the 

chronogram tree were averaged to feed the IM analysis. Estimates of substitution rates 

(x10-9 s/s/y) generated in this study were 1.317, 1.5535, 2.4667 and 2.7064 for the GI, 

cpDNA, ETS and ITS loci, respectively.  
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2.6. Species Network reconstruction 

A species network was reconstructed from the BEAST chronogram using the 

HOLM algorithm (Huber et al., 2006) implemented in DENDROSCOPE v.3.2.10 

(Huson and Scornavacca, 2012). This algorithm generates a phylogenetic network with 

a minimum number of polyploidization events, suggesting the merging pattern of 

homeologous genomes of a polyploid species. Alleles from the four loci grafted to 

different branches in the same allopolyploid species were given the same code to 

convert the chronogram into a multilabeled tree. To simplify the representation of the 

network, each homeologous genome per polyploid species was represented by a single 

consensus type in the multilabeled tree. Nonetheless, we observed that the polyploids B. 

phoenicoides, B. madagascariense and B. kawakamii showed two consensus types 

assigned to the same SYLVATICUM homeologous genome according to the Minimum 

Evolution criterion (see Results). Consequently, and aiming to correct it, we generated 

different alternative multilabeled trees, each time dropping one consensus type of each 

species from the chronogram. Then, these topologies were condensed into a single 

consensus tree using the Lowest Stable Ancestor algorithm implemented in 

DENDROSCOPE v.3.2.10. Starting from the multilabeled tree, a collection of maximal 

inextendible subtrees (MIS) were subdivided, identified and pruned. The resulting 

network contained fewer leaves than the original multilabeled tree and, in some cases, 

different collections of MIS. The search steps were repeated until no MIS remained 

(Huber et al., 2006). 

 

2.7. Biogeographic reconstruction of Brachypodium genomes 
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We used the BEAST chronogram and a parametric Dispersal-Extinction-

Cladogenesis (DEC) approach to reconstruct the ancestral range distributions and the 

biogeographic scenarios of the Brachypodium genomes. We assumed that before the 

hybridization, each separate genome evolved independently from each other and that 

after the hybridization the merged homeologous genomes (subgenomes) evolved in 

parallel within the same allopolyploid lineage and ancestral range (see Results). This 

assumption is justified by the fact that once two homeologous genomes reached the 

same ancestral area, they did not disperse to different areas later (see Table 1 and 

Results for more details). Alternative DEC models were compared through Maximum 

Likelihood analysis in LAGRANGE v. 20130526 (Ree and Smith, 2008). The 

chronogram was also used to infer global extinction and dispersal rates and range 

inheritance scenarios at each node.  

We defined 10 operational areas (OAs) for reconstructing the biogeography of 

the Brachypodium genomes (Fig. 1; Table A.4). The OAs were selected according to 

the current distribution of taxa in their respective native ranges (excluding recent 

anthropogenic introductions of B. hybridum and B. sylvaticum in non-native ranges), but 

also reflected the geological history of the study area: A) western Mediterranean; B) 

eastern Mediterranean + SW Asia; C) western Eurasia (from the Atlantic to the Urals); 

D) eastern Eurasia (from the Urals to the Pacific and eastern Asia); E) Canary Islands; 

F) America (from Mexico to Peru-Bolivia); G) Africa (Tropical Africa and South 

Africa); H) Madagascar; I) Taiwan; and J) Malesia (including Papua-New Guinea). 

Given the relatively disjunct and isolated distribution of most current Brachypodium 

taxa, the DEC analyses were constrained to a maximum number of two areas at 

ancestral nodes, assuming that ancestors (and genomes) were not more widespread than 

their extant descendants.  
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Two alternative DEC models were used to infer the biogeographical events 

along the branches of the Brachypodium chronogram, an unconstrained model (M0), 

where dispersal rates between all biogeographic areas were constant through time, and a 

constrained stratified model (M1), where the topology was divided into three temporal 

windows, each with a specific matrix of dispersal rates set according to paleogeographic 

connectivity (Table A.4). Three time slices were defined: TSI, Mid-Miocene (Langhian) 

to Messinian (16.2-7.2 Ma); TSII, Messinian to Pleistocene (7.21-2.6 Ma); and TSIII, 

Quaternary (2.61-0 Ma). These time slices were used to reflect the foremost 

paleogeographic events of both hemispheres that could have affected the divergence of 

the current Brachypodium lineages. 

 

3. Results 

3.1. The Brachypodium species tree and inference of allopolyploid homeologous 

genome lineages 

Single-locus haplotypic networks and phylogenetic trees of Brachypodium based 

on plastid, ITS, ETS and GI data were in agreement with in the earliest divergences of 

B. stacei, B. mexicanum and B. distachyon lineages, and of a more recent split of the 

core perennial group (Figs. 3A-D, C.1-C.4; Appendix B.4). The ETS and ITS data also 

detected the early divergence of the African B. bolusii/B. flexum, the Canarian B. 

arbuscula and the Mediterranean B. retusum lineages within the core perennials clade, 

and the clustering of endemic East Asia-Madagascar [B. sylvaticum (China)/B. 

kawakamii, B. madagascariense] and East Asia-New Guinea (B. kawakamii/B. 

sylvaticum var. pseudodistachyon) haplotypes, respectively. The three nuclear genes 

(ETS, ITS, and GI) identified co-inherited B. stacei-type and B. distachyon-type 

parental copies in B. hybridum, and a number of co-inherited ancestral and recently 
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evolved homeologous copies among the perennial allopolyploid species (Figs. 3B-D, 

C.2-C.4 and Appendix B.4). 

Our diploid tree, which included only Brachypodium species of confirmed 

diploid nature (Fig. 4), showed the earliest divergence for the annual B. stacei lineage, 

then the annual B. distachyon and lastly the clade of core perennial taxa, which 

successively split into the B. arbuscula, B. genuense, B. sylvaticum, B. glaucovirens, 

and B. pinnatum 2x (2n=18)/B. rupestre 2x (2n=18) lineages. The grafting of 

Brachypodium polyploid alleles, inferred from the minimum evolution approach along 

the branches of the species tree, suggested  there were six homeologous genomes that 

could have participated in allopolyploidization events within Brachypodium, spanning 

several levels of phylogenetic depth (Figs. 4 and 5). We have named core genomes all 

recently evolved genomes falling within the core perennial clade, and out-core genomes 

those showing more ancestral divergences. We also traced the sources of one of the 

most ancestral out-core type genomes (ANCESTRAL), two more recently diverged out-

core diploid genomes [STACEI (stacei-like)] and DISTACHYON (distachyon-like)], one 

ancestral core-type genome (ARBUSCULA), and two recently diverged core-type 

diploid genomes [SYLVATICUM (sylvaticum-genuense-like) and PINNATUM 

(pinnatum-rupestre-like)] (Figs. 4, 5). Both SYLVATICUM and PINNATUM were 

represented by polyploid alleles grafted to B. sylvaticum + B. genuense and B. pinnatum 

+ B.rupestre terminal branches, respectively. However, we considered each of them as 

constituting a single genome, because they were grafted to both branches with similar 

though moderate-to-low bootstrap support. In addition, the GLAUCOVIRENS genome 

was represented by alleles grafted to B. glaucovirens + B. sylvaticum branches; 

although, in this case, strong bootstrap support was also observed for alleles grafted to 

the B. glaucovirens terminal branch. 
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 The Minimum Evolution reconstruction placed the alleles of B. mexicanum in 

the out-core ANCESTRAL and STACEI genomes (Figs. 4). The B. hybridum alleles were 

strongly associated with two out-core terminal branches, suggesting parental B. stacei-

like (STACEI) and B. distachyon-like (DISTACHYON) ancestors. The perennial species 

B. boissieri had alleles strongly related to out-core ANCESTRAL and STACEI genomes 

and to the recent core genome SYLVATICUM.  Grafting allelic copies of the remaining 

polyploid or unknown-ploidy Brachypodium species was restricted to the recent stem 

branch and internal branches of the core perennial clade. The ARBUSCULA, 

SYLVATICUM and PINNATUM genomes were potentially involved in the origins of 

seven allopolyploid core perennial species: B. phoenicoides, B. kawakamii, B. 

madagascariense, B. retusum, B. flexum and B. bolusii (Figs. 4, 5; Appendix B.4). With 

respect to six allotetraploid B. pinnatum and B. rupestre cytotypes (B. pinnatum 4, 11, 

413 and 503, and B. rupestre 144 and 182), we observed the overall participation of the 

SYLVATICUM and ARBUSCULA genomes in most of them, plus two additional sources 

of genome ancestry associated to GLAUCOVIRENS in B. pinnatum 11 and 413 and 

SYLVATICUM in B. pinnatum 503 and B. rupestre 182, (Fig. 4). In contrast, the 

PINNATUM genome was found only in B. rupestre 144 (Figs. 4).  

 

3.2. Divergence times and biogeography of the Brachypodium lineages 

The consensus maximum clade credibility chronogram indicated that the 

Brachypodium lineage branched off from its stem node (S) in the Late Eocene (38.8 

Ma) and the split of the crown node (CR) occurred in the Mid-Miocene (12.6 Ma) (Fig. 

6). Our analyses also showed successive Late-Miocene and Early-Pliocene divergences 

for the basalmost currently extant Brachypodium genome lineages (B. stacei, 6.8 Ma; B. 

distachyon, 5.1 Ma). This was followed by a rapid radiation of the core perennial 
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genome lineages from the end of the Pliocene (2.4 Ma) through the Quaternary, 

showing the sequential divergence of B. arbuscula (1.5 Ma), B. genuense (0.7 Ma), B. 

sylvaticum (0.6 Ma), B. glaucovirens (0.5 Ma), and B. rupestre/B. pinnatum lineages 

(0.3 Ma).  

According to the coalescence-based Isolation Migration model, the American B. 

mexicanum originated by the hybridization of two out-core genomes approximately 3.3 

Ma (Table 1) and the Mediterranean B. hybridum originated from the out-core STACEI 

and DISTACHYON genomes in the Quaternary (0.04 Ma; Table 1). The Mediterranean 

B. retusum and B. boissieri, the African B. flexum and the eastern-Asian B. kawakamii 

species were inferred to have resulted from the merging of three distinct genomes 

between 0.03 and 0.07 Ma. The allopolyploids include i) the out-core ANCESTRAL and 

DISTACHYON genomes in B. boissieri; ii) the ancestral core-type genome 

ARBUSCULA in B. flexum, B. kawakamii and B. retusum; and, iii) the recently evolved 

core-type genomes SYLVATICUM and PINNATUM in all of these species (except 

PINNATUM in B. boissieri) (Table 1). The mid- to late-Quaternary parental 

ARBUSCULA genome of African B. bolusii/B. flexum (0.03/0.61 Ma) and Madagascar-

Eastern Asian B. madagascariense/B. kawakamii (0.39/0.31 Ma) lineages merged with 

other genomes, resulting in the origin of the current polyploid taxa in the late 

Quaternary (Table 1). The sister eastern Asian B. sylvaticum EA/B. sylvaticum var. 

pseudodistachyon diverged from the Eurasian B. sylvaticum lineage in the late 

Quaternary (0.2 Ma) (Fig.6).  

The stratified DEC model (M1) of Brachypodium showed a better fit for the data 

than the unconstrained (M0) model (-ln likelihood 196.7 vs. 206.3, respectively; 

Likelihood Ratio Test (LRT)=19.2, p =0.001), and we will refer to this model hereafter 

(Fig. 7). The global estimated dispersal rate (dis: 0.8314) was five times higher than the 
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estimated extinction rate (ext: 0.1632) for the M1 model. The estimation of the 

geographic origin of the ancestral Mid-Miocene MRCA of Brachypodium showed 

considerable uncertainty (CR). The western Mediterranean and American ranges (AF) 

were inferred as the most likely area for it, followed by vicariance and the spread of the 

American genomic lineage to eastern Eurasia (DF) in the Mid-Miocene (Ne, Nf) (Figs. 

7, 8). Different Mid- to Late-Miocene biogeographical events, involving the Palaeartic 

and Nearctic regions, were inferred to explain the ancestral distributions of the earliest 

diverging genome lineages of Brachypodium (the ancestral Mediterranean genome, B. 

stacei, B. mexicanum, B. distachyon) (nodes Na, Ne, Nf, NST, Ng, NDS; Fig. 7). The 

origin of the ancestor of the core perennial clade was estimated to have occurred 

between the Late Miocene in the eastern Eurasia-eastern Mediterranean region (NDS, 

BD, 5.1 Ma) and the Pliocene in the eastern Mediterranean-Africa region (NAR, BG, 

2.42 Ma) (Figs. 7, 8). Several Quaternary Long Distance Dispersal (LDD) events had to 

be invoked to explain the successive colonizations of eastern Mediterranean-eastern 

Eurasian perennial ancestral genomes to Africa (NAR, BG, 2.42 Ma), Macaronesia (Nϡ-

Nα, BD-BE, 1.47-0.14Ma), Madagascar (Nε-Nη, DG-GH, 0.74-0.23Ma), East Asia (Nζ, 

DI, 0.5Ma), and Malesia (Nδ, GI, 0.24Ma), plus the parallel expansions to the western 

Eurasian-western Mediterranean ranges (Figs. 7, 8). Successive Quaternary LDDs 

involved colonization from the eastern Mediterranean to western Eurasia (Nθ, BC, 

0.92Ma), western Eurasia to the western Mediterranean (Nβ, AC; 0.73 Ma) and from the 

western to eastern Mediterranean (Nξ, AB; 0.28 Ma) areas (Figs. 7, 8).  

The western and eastern Mediterranean ranges hosted the most complex 

hybridization and genome doubling processes, which generated the high ploidy level 

Brachypodium allopolyploids (B. boissieri, B. retusum) (Table A.1). The genomes of 

several recent lineages from western Eurasia (SYLVATICUM, PINNATUM) have 
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converged with the ancestral local core lineage (ARBUSCULA) in B. retusum or with 

local out-core western Mediterranean genomes (DISTACHYON+ANCESTRAL) in B. 

boissieri (Figs. 7, 8). Similar patterns of genomic colonization, but involving long 

distance transoceanic dispersal, mostly from eastern to western Mediterranean regions 

(NAR, NSG, Nρ), but also from eastern Eurasia (Nz, Nμ) to Africa and Madagascar, could 

have contributed to the presumed  allopolyploids B. bolusii, B. flexum and B. 

madagascariense. In Taiwan, the putative allopolyploid B. kawakamii likely resulted 

from the merging of colonizing genomes from eastern Eurasia (Ny, Nζ) and the western 

Mediterranean region (Nφ, Nς) (Figs. 7, 8). 

  

4. Discussion 

 

4.1. A baseline phylogeny for Brachypodium: unravelling the evolutionary 

reticulate polyploid history of its model grass species 

Reconstructing the evolutionary history of organismal groups where high level 

allopolyploids outnumber extant parental genomes is a major challenge in phylogenetic 

research (Brysting et al., 2007; Kamneva et al., 2017). Several studies, however, have 

applied alternative approaches to unravel the splits and mergings of the homeologous 

genomes that originated highly reticulate polyploid groups. These approaches include 

multilabeled genomes tree and species network dating analysis (e. g., Cerastium, 

Brysting et al., 2007; Viola, Marcussen et al., 2015); Bayesian concordance, multilocus 

species tree and coalescence-based dating analysis (Hordeum, Brassac and Blattner, 

2015); and multilabeled gene trees, network clustering and coalescence-based 

hybridization tests (Fragaria, Kamneva et al., 2017).  These analyses have faced the 

difficulty of identifying potential “ghost genomes”—currently present only in the 
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allopolyploids (Brassac and Blattner, 2015; Brysting et al., 2007; Marcussen et al., 

2015)— and accounting for plausible gene copy losses and lineage sorting events 

(Brassac and Blattner, 2015; Kamneva et al., 2017) that could confound the recovery of 

all homeologous genomes.   

Our study provides a comprehensive and updated phylogenetic reconstruction of 

the model genus Brachypodium with respect to previous work (Catalán et al., 2012, 

2016; Wolny et al., 2009), including the 18 currently recognized taxa that are 

distributed worldwide (Fig. 1, Figs. 3A-D, C.1-C.4). A statistical correction for the 

excess of allelic copies has allowed for the retrieval of diploid homeologous genomes 

participating in known allopolyploid species and cytotypes, congruent with their 

expected chromosome ploidy level (B. hybridum 4x, B. mexicanum 4x, B. phoenicoides 

4x, B. pinnatum 4x, B. retusum 6x, and B. rupestre 4x) (Table A.1, Figs. 4, 5). Our 

analysis retrieved only three homeologous genomes for the putative allo-octoploid B. 

boissieri (2n=42, 46; Schippmann, 1991).  Because we did not include in the 

reconstruction some consensus types that were supported only by one clone, this led to 

the exclusion of one potential ancestral copy of B. retusum, which was preliminarily 

grafted to the ancestral branch of the species tree, suggesting an ancient genomic 

composition in the species similar to that of B. boissieri. We have provided further 

evidence for the potential allopolyploid nature of other karyologically unknown taxa (B. 

bolusii, B. flexum, B. kawakamii, B. madagascariense) (Fig. 4), though their ploidy 

levels have to be confirmed through cytogenetic data. Our Minimum Evolution analysis 

identified ANCESTRAL, a putative old ghost genome, in B. mexicanum and B. boissieri 

(Figs. 4). This lends support for a slightly earlier Miocene split of the crown 

Brachypodium ancestor (12.6 Ma), than was previously estimated from current extant 

taxa and whole plastome analyses of most ancestral annual Brachypodium lineages 
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(10.1 Ma; Sancho et al., 2017). Evolutionary relationships have been corroborated for 

six poorly studied taxa (B. bolusii, B. flexum, B. genuense, B. kawakamii, B. 

madagascariense, B. sylvaticum var. pseudodistachyon), all falling within the core 

perennial clade (Figs. 3A-D, 4, 5, Figs. C.1-C.4). Approximately half of the species in 

the genus are diploids (8) and most of the remaining taxa (10) are likely allopolyploids 

(Figs. 3A-D, 4, 5; Figs. C.1-C.4), as determined for other model grasses, such as Oryza 

(Zhou et al., 2015).  

Our Species Network reconstruction is in agreement with previous studies of the 

more ancestral divergences of the annual B. stacei and the short-rhizomatose B. 

mexicanum, and in the sister relationship of the annual B. distachyon and the core 

perennial clade (Figs. 3A-D, 4, 5 Figs. C.1-C.4). The derived allotetraploid origin of the 

annual B. hybridum from its diploid ancestors, B. stacei and B. distachyon, is supported 

by our loci and bootstrapping analyses (Fig. 4). This confirms that B. hybridum is, thus 

far, the only allopolyploid Brachypodium species with known extant diploid progenitors 

(Gordon et al., 2016).  Our dated chronogram (Fig. 6) and IM analysis (Table 1) 

indicates that B. mexicanum could be considered a mesopolyploid, showing only 

ancestral out-core homeologous copies, and an estimated age of 3.37 Ma. By contrast, 

the core perennial allopolyploid species are neopolyploids, with estimated ages younger 

than 0.4 Ma. They either have homeologous copies from both ancestral out-core and 

recent core genomes (Table 1; Fig. 6), or only from recent core genomes, similar to the 

perennial relatives of rice and barley (Brassac and Blattner, 2015; Zhou et al., 2015). In 

general, the estimated coalescent times of origins of the core perennial Brachypodium 

allopolyploids were very recent (Table 1), although they overlap with the time 

divergence HPD intervals estimated for some species clades in other studies (e. g., B. 

hybridum; Catalán et al., 2012). The Species Network reconstruction shows two 
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potential origins (ANCESTRAL, STACEI) for the alleles of B. mexicanum (Figs. 4, 5).  

This connection to the STACEI genome could explain the shared biological, 

morphological and genomic features of B. mexicanum and B. stacei (Catalán et al., 

2016).  

The Minimum Evolution and coalescent analyses have clarified the genomic 

composition and recent origin of the perennial allopolyploid B. boissieri (ANCESTRAL, 

DISTACHYON and core SYLVATICUM genomes; 0.03 Ma), previously treated as an 

early split of the genus (Catalán et al., 2012), and of a similar age but different genome 

composition than the phenotypically close B. retusum (core ARBUSCULA, 

SYLVATICUM and PINNATUM genomes, 0.036 Ma) (Figs. 3D, 4, 5, Table 1). The 

genomic composition of B. retusum concurs with its allohexaploidy (Betekhtin et al., 

2014; Catalán et al., 2016). However, only three homeologous genomes have been 

detected in the purported allo-octoploid B. boissieri, suggesting a potential convergent 

evolution of some rDNA copies (Nieto-Feliner and Rosselló, 2007) or a loss of GI 

copies for the lost genome. The allotetraploid B. phoenicoides shows alleles associated 

with the recent core genomes SYLVATICUM and PINNATUM (Figs. 4, 5) and the 

tetraploid cytotypes of B. pinnatum and B. rupestre, alleles  associated to the core 

species B. glaucovirens (GLAUCOVIRENS genome), but also to SYLVATICUM, 

PINNATUM and ARBUSCULA (Fig.  4). It should be emphasized that, contrary to our 

expectations, the PINNATUM genome, present in the B. pinnatum and B. rupestre 

diploid cytotypes, was only involved in the origin of a single allotetraploid cytotype of 

this group, B. rupestre144 (Fig. 4).  

Our study has revealed the evolutionary origins of B. bolusii, B. flexum, B. 

kawakamii and B. madagascariense (Figs. 4, 5). These lineages show homeologous 

ARBUSCULA allelic copies grafted to the core perennial clade, indicating a putative 
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hybrid origin from recently divergent genomes. By contrast, some of the studied loci 

(ITS, ETS) have identified a Malagasy-East Asian lineage composed of  B. 

madagascariense, B. kawakamii, B. sylvaticum var. pseudodistachyon and an 

infraspecific B. sylvaticum var. sylvaticum East Asian lineage (Figs. 3B-C;C.2, C.3). 

This suggests the easternmost populations of the widespread Palaearctic B. sylvaticum, 

selected as a model grass for perenniality (Gordon et al., 2016), could belong to a 

separate taxon. The species network analysis did not show any clear concurrence of 

sequential hybridizations in the origin of high allopolyploid species (Fig. 5). However, 

potential low allopolyploid progenitors were presumably formed, especially when their 

ancestral genomes co-occurred in the same geographic area  (e. g., B. boissieri: 

DISTACHYON and ANCESTRAL co-occurring in the western Mediterranean; B. 

retusum: ARBUSCULA and SYLVATICUM co-occurring in the eastern Mediterranean + 

SW Asia; and B. kawakamii: ARBUSCULA and SYLVATICUM co-occurring in 

Taiwan), or when they had different geographical origins but all merged in the same 

ancestral range (e. g., B. flexum: ARBUSCULA,  SYLVATICUM and PINNATUM) (Fig. 

8, Table 1). Our results do not support the hypothesis of the potential participation of a 

B. distachyon-like parent with x=5 chromosomes (and a perennial parent with x=9) in 

the origin of the 2n=28 allotetraploids B. pinnatum 4x, B. rupestre 4x and B. 

phoenicoides (Betekhtin et al., 2014; Wolny and Hasterok, 2009). Nonetheless, the 

relatively small number of clones surveyed for the nuclear loci (5) may have failed to 

detect other potential allelic copies. The inferred participation of only core perennial 

genomes in these allotetraploids (Fig. 4) disagrees with the chromosome base numbers 

of x=9, 8 found among their closest current diploid species (Table A.1). Plausible 

hypotheses for their in-core origins suggest the participation of two distinct genomes 

with x=9 or x=8, and their consequent chromosome fusions/losses after the genome 
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doubling, or with x=7, a chromosome base number not confirmed yet in the 

cytogenetically studied diploid Brachypodium species (Betekhtin et al., 2014; Wolny 

and Hasterok, 2009; Catalán et al., 2016), but indicated by some authors (Robertson, 

1981). 

 

4.2. Historical biogeography of the Brachypodium genomes and taxa: a spatio-

temporal scenario for successive splittings and mergings 

Biogeographical reconstructions of large allopolyploid plant groups have been 

mostly drawn from matrilineal plastid DNA trees (e. g., Primula, Guggisberg et al., 

2006; Rosa, Fougère-Danezan et al., 2015) or from combined trees of reciprocally 

congruent nuclear and plastid gene topologies (e. g., Cardamine, Carlsten et al., 2009; 

Loliinae, Inda et al., 2014; Danthonioideae, Linder and Barker, 2014) where 

allopolyploids were represented by a single sequence per genotype. However, these 

simplistic historical reconstructions are prone to errors if the plastid or the nuclear 

genome donors had ancestral areas different from those of the current allopolyploids. 

Other studies have inferred the ancestral ranges after excluding the conflicting hybrid 

polyploids (e. g., Abies, Xiang et al., 2015; Tolpis, Gruenstaeudl et al., 2017), which 

impeded the recovery of the biogeographical history of their homeologous genomes.  

Our study, using the species and cytotypes of the grass genus Brachypodium as 

models, represents the first attempt to reconstruct the biogeography of ancestral 

genomes inherited by current diploid and allopolyploid taxa. The proposed 

biogeographical scenarios for the Brachypodium genomes and taxa fit the conceptual 

requirements for appropriate ancestral range reconstruction, and show i) that the splits 

of the allopolyploids’ homeologous (sub)genomes from those of their diploid 

counterparts occurred in the same ancestral areas, although they could have dispersed 
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independently (Fig. 7),  and ii) that following the genome mergings, the homeologous 

genomes participating in the new allopolyploids had the same biogeographical patterns 

(Figs. 7, 8). The inferred existence of parallel evolution of homeologous genomes 

within the allopolyploid Brachypodium species might have artificially increased the 

global rate of dispersion estimated by LAGRANGE (dis: 0.8314). This is predicated on 

our approach that considered a dispersal event of an allopolyploid as two or three 

independent events, each related to a single subgenome. We contend that this was not 

important in Brachypodium because all homeologous genomes of B. hybridum, B. 

boissieri, B. bolusii, B. retusum, B. mexicanum and B. phoenicoides originated in the 

same geographic location (Table 1, Fig. 8), thus precluding these species acting as 

genetic sources for additional dispersions. For the remaining allopolyploids (B. 

madagascariense, B. flexum and B. kawakamii), some dispersion events were observed 

(Table 1, Fig. 8), but they were limited to a single genome at a time.  

Our DEC M1 model has provided a biogeographical scenario for the 

Brachypodium genomes and taxa that supports the origin of their MRCA in the 

Holarctic region, followed by successive dispersals to Northern and Southern 

Hemisphere ranges from the Miocene to the present (Figs. 7, 8). This parallels similar 

cases with other temperate grasses and angiosperms (e. g., Cardueae, Barres et al., 2013; 

Hordeum, Blattner, 2006; Loliinae, Minaya et al., 2017). Of 32 total inferred dispersals, 

25 occurred in the Quaternary (TSIII), 5 in the the Pliocene (TSII) and two in the 

Miocene (TSI), (Fig. 7). This indicates that most Brachypodium genomes and species, 

especially those of the core perennial clade, emerged very recently. The western 

Mediterranean and American ranges were reconstructed as the ancestral areas with the 

highest marginal probabilities for the MRCA of Brachypodium (CR, 12.6 Ma). In the 

Mid-Miocene the areas were probably connected through Asia and the Bering Land 
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Bridge, favoring the migrations of these and other xerophytic ancestors (Sanmartin et 

al., 2001). A Mid-Miocene vicariance (CR; A/F), coincident with a major temperature 

drop in the global climate (Meijer and Krijgsman, 2005), would explain the distribution 

of an isolated W Mediterranean genome (Na), later inherited by the local polyploid B. 

boissieri and by the American B. mexicanum (Figs. 7, 8). Several connections between 

America and Asia through Beringia enabled genomic exchanges between the two areas 

(e. g. Rosa, Fougere-Danezan et al., 2015). A Mid-Late Miocene range expansion from 

America to Asia (Ne, 9.1 Ma; DF), followed by peripheral isolations, probably 

originated the ANCESTRAL genome of B. mexicanum, whereas a Late Miocene 

American/Asian vicariance (Ng, 5.4 Ma; F/D), followed by dispersal of the Old World 

lineage to the Mediterranean region in the Pliocene (Nj, 3.0 Ma; AB), likely separated 

the STACEI genome of B. mexicanum from that of B. stacei (Figs. 7, 8, Table 1).  

Mediterranean migrations could have been facilitated by the opening of 

Mediterranean-southwestern Asian land bridges as a consequence of the Messinian 

salinity crisis (Krijgsman, 2002; Meulenkamp and Sissingh, 2003). Two concomitant 

independent Late Miocene-Pliocene LLDs from eastern to western Mediterranean 

ranges would explain the respective widespread AB distributions of xeromorphic B. 

stacei (Ng-Nj, 5.4-3.0 Ma) and meso-xeromorphic B. distachyon plus DISTACHYON-

like genomes (II-No, 5.1-3.8 Ma), whereas western Mediterranean Pliocene and 

Quaternary peripheral isolations within the DISTACHYON lineage probably originated a 

distachyon-like genome, also inherited by the local B. boissieri polyploid (Figs. 7, 8, 

Table 1). Our data strongly support the merging of the STACEI (x=10) and 

DISTACHYON (x=5) diploid genomes in the derived allotetraploid (heteroploid) annual 

B. hybridum in the Mediterranean region during the Quaternary (ca. 0.05 Ma) (Figs. 4-

8, Table 1). This corroborates the potential existence of multiple hybridization scenarios 
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in the region at different Pleistocene and Holocene times (Catalán et al., 2012) that 

could have facilitated the recurrent origin of the species (López-Álvarez et al., 2015). 

Multiple colonizations of Eurasia and other continents by ancestral perennial 

Brachypodium genomes (x=9, 8) were inferred to have occurred profusely in the 

Pliocene-Pleistocene (Fig. 7). These genomes merged with more ancestral annual-type 

genomes (x=10, 5), giving rise to a dysploid series of strongly-rhizomatose core 

perennial allopolyploid taxa (Fig. 8) (Betekhtin et al., 2014; Catalán et al., 2016). In 

addition, a Late Miocene-Pliocene range expansion from the eastern Mediterranean 

region to Africa would explain the widespread distribution of ancestral genomes of the 

core perennial clade (NDS-NAR, 5.1-2.4 Ma; BG). This migration likely occurred through 

the southwest Asian and Arabian platform corridor, a main migratory pathway of 

temperate Holarctic elements into East Africa and South Africa (Gehrke and Linder, 

2009). Subsequent peripheral isolations and colonization of Asia, Madagascar and 

Taiwan, concomitantly with the Quaternary climatic oscillations (Hewitt, 2000) and the 

recent uplifts of the high African and Central and East Asian mountains, were inferred 

to explain the origins of the oldest core-type ARBUSCULA genome. This genome was 

inherited from a putative polyploid African (B. bolusii, B. flexum), Malagasy (B. 

madagascariense) and Taiwanese (B. kawakamii) species (Figs. 7, 8). A Mid-

Quaternary LDD of a perennial genome from the eastern Mediterranean region to 

Macaronesia (Canary Islands), followed by vicariance (Nϡ-Nα, 1.47-0.14 Ma), would 

explain the origin of the Canarian endemic B. arbuscula, following the emergence of 

these volcanic islands. New range expansions from the E Mediterranean region to 

Africa, and separate migrations from Africa to Asia (NSG-Nγ, 1.17-0.92 Ma; DG) and 

from the Mediterranean region to Europe (NSG-Nθ, 1.17-0.92 Ma; BC), were inferred to 

have caused the disjunct distributions of the ancestral genomes of the East and West 
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Palaearctic perennial lineages (Figs. 7, 8). In the East, Late Quaternary LDDs of 

genomes from Africa to Madagascar (Nε-Nη, 0.74-0.23 Ma), and from Asia to Taiwan 

(Nε-Nζ, 0.74-0.48 Ma), over the respective straits, would explain the origins of newly 

recruited genomes, inherited by the local polyploids. The diploid B. sylvaticum var. 

pseudodistachyon could have originated following transoceanic colonization of an 

African genome in Malesia (Nγ-Nδ, 0.92-0.21 Ma), possibly facilitated by the mountain 

chains in New Guinea (Heads, 2006) (Figs. 7, 8). In the West, Upper Pleistocene range 

expansion from Europe to the Mediterranean region (Nθ-Nβ, 0.92-0.73 Ma AC), and 

their respective Ionian-Holocene dispersals to Asia, were inferred to have been the 

origin of the most recent genomes of Mediterranean diploids B. genuense and B. 

glaucovirens and local polyploids, and of Eurosiberian B. sylvaticum, B. rupestre and B. 

pinnatum diploids. Some of the recent SYLVATICUM and PINNATUM genomes were 

also inferred to have migrated to Africa, Madagascar and Taiwan, contributing to the 

genomic dosage of the local polyploids (Figs. 7, 8). The current widespread Palearctic 

distribution of B. sylvaticum and B. pinnatum (Figs. 1, 8) probably resulted from recent 

Holocene postglacial colonizations from different Eurasian refugia, as indicated for 

other temperate grass lineages (Inda et al., 2014). 

Our reconstruction is the first implementation of a spatio-temporal scenario for 

the successive splitting and merging of genomes in different ancestral areas that is in 

agreement with the formation and distribution of the extant diploid and polyploid 

Brachypodium taxa (Figs. 7, 8). Additionally, our DEC analysis infers that long distance 

dispersal is associated only with diploid genomes, since all of the known hybridizations 

and genome doublings have occurred within ancestral ranges, without further expansion 

to other areas (Table 1; Figs. 7, 8). These results are consistent with previous findings 

showing that allopolyploids evolved mostly in situ and did not disperse or dispersed 
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only to geographically close areas (e. g., Hordeum; Brassac and Blattner, 2015). In 

contrast, some authors have concluded that polyploids were more successful than 

diploids for long distance dispersal, although they used only a single terminal lineage 

per polyploid taxon for their analysis (Linder & Barker 2014). Our genome-wide 

Brachypodium biogeographical scenario supports more frequent past dispersals of 

diploid (and counterpart homeologous) genomes than allopolyploid lineages (Figs. 7, 8). 

This suggests that the dispersal capabilities of diploid and polyploid lineages should be 

revisited within a dissected genomic scenario.  
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Figure 1. The worldwide geographic distribution of the 18 Brachypodium taxa and the 

boundaries of the 10 operational areas used in the biogeographic study [A) western 

Mediterranean; B) eastern Mediterranean + SW Asia; C) western Eurasia (from Atlantic 

to Urals); D) eastern Eurasia (from Urals to Pacific and eastern Asia); E) Canary Isles; 

F) America (from Mexico to Peru-Bolivia); G) Africa (Tropical Africa and South 

Africa); H) Madagascar; I) Taiwan; J) Malesia (including Papua-New Guinea)]. The 

species ranges colors and marks are indicated in the chart.  This image was modified 

from Catalan et al. (2016) with permission of the authors and the publisher.  

 

Figure 2. The general pipeline used for the statistical methods employed in this study. 

The boxes with solid and dashed lines represent main and secondary outputs, 

respectively The software used for each aspect of the pipeline is indicated in capital 

letters. 

 

Figure 3. The statistical parsimony networks constructed with POPART for (A) the 

chloroplast (ndhF + trnLF), (B) the nuclear ITS, (C) the nuclear ETS, and (D) the 

nuclear GIGANTEA (GI) haplotypic data sets (Table A.2). The species colors are 

indicated in the charts. The size of the circles is correlated with the number of samples 

showing the haplotype. 

 

Figure 4. Minimum Evolution grafting of single-locus polyploid alleles into the 

*BEAST diploid species tree. The polyploid alleles of each species are grafted (in color) 

along the branches, according to the bootstrap pseudoreplications. The thick, medium, 

and thin lines represent allele placement with >75, 51-75, and <51 bootstrap support, 

respectively The different colors differentiate the groups of alleles associated with 
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several homoeologous genomes (dark green, SYLVATICUM; light green, PINNATUM; 

purple, ARBUSCULA; dark blue, DISTACHYON; red, STACEI; brown, ANCESTRAL; 

and, light blue, GLAUCOVIRENS). The polyploid alleles grafted to the same branches 

are considered copies of the same homeologous genome. Festuca pratensis (Poeae) was 

used to root the tree. The color codes for the Brachypodium species are indicated in the 

chart.  

 

Figure 5. HOLM species network. The putative homeologous genomes are represented 

by colored lines diverging from specific branches. The diploid species lineages and 

branches generated by the HOLM algorithm that are associated with the same 

homoeologous genome have the same background color.  

 

Figure 6. BEAST maximum clade credibility chronogram of Brachypodium and 

outgroup taxa based on analysis of the four studied loci. The clades are separated into 

(A), the basalmost lineages and (B), the most recently evolved core perennial clade  The 

designations ST, DS, ARB, SG, PR correspond to nodes that define most copies 

associated to STACEI, DISTACHYON, ARBUSCULA, SYLVATICUM and PINNATUM 

genomes, respectively; and, CR (crown) represents the basalmost node of the 

ANCESTRAL genome.  The Roman and Greek lowercase letters identify additional 

chronogram nodes. The right-most labels and color lines represent the allelic copies 

associated with homeologous genomes, following the Minimum Evolution principle. 

The splitting times were inferred for all genomic lineages diverging from the same 

species tree branch. The blue bars indicate 95% highest posterior density (HPD) 

intervals of nodal ages. The asterisks represent nodes with BS >80%. The diamond and 

star symbols indicate secondary and fossil-based calibrations imposed to the BOP and 
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Pooideae nodal ancestors, respectively (see text). The vertical red lines are used to 

separate the three time slices (TSI-TSIII) used in the LAGRANGE analysis (see Fig. 7). 

The time scale bars below each panel represent million years ago (Ma). 

  

Figure 7. The estimated ancestral ranges and biogeographical events of the 

Brachypodium genomes, as inferred from LAGRANGE under the stratified M1 DEC 

model mapped on the BEAST maximum clade credibility tree with outgroups pruned 

from it. The panels represent (A) the basalmost lineages and (B) the recently evolved 

core perennial clade. The pie charts and numbers at the nodes indicate the relative 

probabilities for alternative ancestral ranges (with their color legends indicated at the 

inset chart), and the estimated median ages, respectively. The nodal codes (within the 

brackets) correspond to those indicated in Fig. 6. The vertical red lines are used to 

separate the three time slices (TSI-TSIII) used in the Lagrange analysis. The 

Operational Areas assigned to species’ genomes are indicated to the right of the tree.    

 
Figure 8. A map of the continents showing the ancestral areas and the dispersal and 

merging events of Brachypodium genomes, inferred under the optimal stratified M1 

DEC Model (Fig. 7). Subfigures A, B and C show the nodes related to different sections 

of the BEAST maximum clade credibility tree (Fig. 7). The dashed arrows represent 

main dispersals between areas and the solid arrows represent the evolution of genomic 

lineages within the same area (phylogeny). The ancestral and recent genomes of the 

diploid skeleton tree and the Beast chronogram are depicted as circles that are color 

coded according to their respective main ancestral genome. The polyploid species are 

represented by circles with colored sections, representing homeologous genomes. The 

species abbreviations are: arb, B. arbuscula; boi, B. boissieri; bol, B. bolusii; dis, B. 

distachyon; EA, B. sylvaticum East Asia; fle, B. flexum; gen, B. genuense; gla, B. 
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glaucovirens; hyb, B. hybridum; kaw, B. kawakamii; mad, B. madagascariense; mex, B. 

mexicanum; pho, B. phoenicoides; pin, B. pinnatum; pse, B. sylvaticum var. 

pseudodistachyon; ret, B. retusum; rup, B. rupestre; sta, B. stacei; and, syl, B. 

sylvaticum. 
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Table 1. The estimated age (Ma) of homeologous genomes present in the allopolyploid Brachypodium species. This is inferred from the 

coalescent splits from their respective closest counterpart diploid genome lineages, computed through the Isolation-Migration model 

implemented in IM. A square box represents the age of the most recent homeologous genome in a taxon and the inferred time for the putative 

origin of the hybrid. The ploidy levels correspond to those indicated in Table A.1. The numbers within the square brackets indicate the 

number of loci used for each estimation. The numbers within parentheses correspond to the homeologous genomes participating in the 

allopolyploids, ranging from the youngest (1) to the oldest (2) or (3). The Ancestral Areas (AAs) represent a matrix occupied by the 

homeologous genomes (rows) when they diverged from their respective diploid relatives (columns). The AAs of a cell represent the sum of 

the AAs of all parent nodes of all allelic copies assigned to a homeologous genome (see colored lineages in Figs. 6 and 7), just before the time 

of divergence from its diploid genome. For example, in B. flexum its ARBUSCULA (0.609 Ma), SYLVATICUM (0.197 Ma) and PINNATUM 

(0.024 Ma) homeologous genomes originated in BG, B and G, respectively; when SYLVATICUM and PINNATUM split, the more ancestral 

ARBUSCULA was already distributed in G, and when PINNATUM split SYLVATICUM was also distributed in G; all three ancestral 

homeologous genomes merged in the same area (G) giving rise to B. flexum. The AA codes represent: A, western Mediterranean; B, eastern 

Mediterranean + SW Asia; F, America; G, Africa; H, Madagascar; and I, Taiwan. The designation (*) ANCESTRAL indicates the ancestral 

homeologous genome without any known diploid relative. The age estimation was performed using B. stacei as a reference. The designation 

(**) IM  indicates coalescent diverging times that are estimates of the demographic divergence time of each homeologous genome from its 

diploid relative. For example, the STACEI homeologous genome of B. hybridum might have diverged more recently from B. stacei than the 

DISTACHYON homeologous from B. distachyon (this Table), despite the BEAST species tree indicates that the B. stacei lineage is more 

ancestral than that of B. distachyon (Fig. 6). 
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Polyploid species time**  AA  Polyploid species time  AA 
   (2) (1)     (3) (2) (1) 
B. hybridum (4x)      B. boissieri (cf. 8x)      
(1) STACEI [4] 0.035   AB  (1) SYLVATICUM [1] 0.030    A 
(2) DISTACHYON [2] 0.060  AB AB  (2) DISTACHYON [1] 3.750   A A 
      (3) ANCESTRAL [3] 16.915*  A A A 
B. bolusii (unknown)            
(1) ARBUSCULA [2] 0.027   G  B. flexum (unknown)      
(2) SYLVATICUM [2] 0.379  G G  (1) PINNATUM [1] 0.024    G 
      (2) SYLVATICUM [1] 0.197   B G 
B. madagascariense (unknown)      (3) ARBUSCULA [2] 0.609  BG G G 
(1) ARBUSCULA [1] 0.390   H        
(2) SYLVATICUM [2] 0.441  AG AG  B. retusum (6x)      
      (1) PINNATUM [1] 0.036    A 
B. mexicanum (4x)      (2) ARBUSCULA [1] 0.037   B B 
(1) STACEI [2] 3.377   F  (3) SYLVATICUM [2] 0.466  A B B 
(2) ANCESTRAL [2] 11.070  F F        
      B. kawakamii (unknown)      
B. phoenicoides (4x)      (1) PINNATUM [1] 0.067    A 
(1) PINNATUM [1] 0.048   A  (2) ARBUSCULA [1] 0.309   I I 
(2) SYLVATICUM [3] 0.052  A A  (3) SYLVATICUM [2] 0.476  AI AI I 
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Reconstructing the origins and the biogeography of species’ genomes in the highly 

reticulate allopolyploid-rich model grass genus Brachypodium using minimum 

evolution, coalescence and maximum likelihood approaches 

Antonio Díaz-Pérez, Diana López-Álvarez, Rubén Sancho, Pilar Catalán 
 
 
Highlights: 

 A comprehensive 5-gene phylogeny of the model grass genus Brachypodium 
was built  

 Minimum-Evolution and Species-Network approaches identified the concurring 
genomes 

 Detected homeologous genomes matched the expected ploidy levels of 
allopolyploids  

 Splittings and mergings of genomes occurred in different spatio-temporal 
scenarios 

 Our biogeographical study infers dispersals of diploids but not of allopolyploids 

 


