11,343 research outputs found

    Maximizing the hyperpolarizability of one-dimensional systems

    Full text link
    Previous studies have used numerical methods to optimize the hyperpolarizability of a one-dimensional quantum system. These studies were used to suggest properties of one-dimensional organic molecules, such as the degree of modulation of conjugation, that could potentially be adjusted to improve the nonlinear-optical response. However, there were no conditions set on the optimized potential energy function to ensure that the resulting energies were consistent with what is observed in real molecules. Furthermore, the system was placed into a one-dimensional box with infinite walls, forcing the wavefunctions to vanish at the ends of the molecule. In the present work, the walls are separated by a distance much larger than the molecule's length; and, the variations of the potential energy function are restricted to levels that are more typical of a real molecule. In addition to being a more physically-reasonable model, our present approach better approximates the bound states and approximates the continuum states - which are usually ignored. We find that the same universal properties continue to be important for optimizing the nonlinear-optical response, though the details of the wavefunctions differ from previous result.Comment: 10 pages, 5 figure

    Electronic structure of crystalline binary and ternary Cd-Te-O compounds

    Full text link
    The electronic structure of crystalline CdTe, CdO, α\alpha-TeO2_2, CdTeO3_3 and Cd3_3TeO6_6 is studied by means of first principles calculations. The band structure, total and partial density of states, and charge densities are presented. For α\alpha-TeO2_2 and CdTeO3_3, Density Functional Theory within the Local Density Approximation (LDA) correctly describes the insulating character of these compounds. In the first four compounds, LDA underestimates the optical bandgap by roughly 1 eV. Based on this trend, we predict an optical bandgap of 1.7 eV for Cd3_3TeO6_6. This material shows an isolated conduction band with a low effective mass, thus explaining its semiconducting character observed recently. In all these oxides, the top valence bands are formed mainly from the O 2p electrons. On the other hand, the binding energy of the Cd 4d band, relative to the valence band maximum, in the ternary compounds is smaller than in CdTe and CdO.Comment: 13 pages, 15 figures, 2 tables. Accepted in Phys Rev

    Projective filtering of a single spatial radiation eigenmode

    Full text link
    Lossless filtering of a single coherent (Schmidt) mode from spatially multimode radiation is a problem crucial for optics in general and for quantum optics in particular. It becomes especially important in the case of nonclassical light that is fragile to optical losses. An example is bright squeezed vacuum generated via high-gain parametric down conversion or four-wave mixing. Its highly multiphoton and multimode structure offers a huge increase in the information capacity provided that each mode can be addressed separately. However, the nonclassical signature of bright squeezed vacuum, photon-number correlations, are highly susceptible to losses. Here we demonstrate lossless filtering of a single spatial Schmidt mode by projecting the spatial spectrum of bright squeezed vacuum on the eigenmode of a single-mode fiber. Moreover, we show that the first Schmidt mode can be captured by simply maximizing the fiber-coupled intensity. Importantly, the projection operation does not affect the targeted mode and leaves it usable for further applications.Comment: 10 pages, 9 figure

    Recovering the properties of high redshift galaxies with different JWST broad-band filters

    Get PDF
    Imaging with the James Webb Space Telescope (JWST) will allow for observing the bulk of distant galaxies at the epoch of reionisation. The recovery of their properties, such as age, color excess E(B-V), specific star formation rate (sSFR) and stellar mass, will mostly rely on spectral energy distribution fitting, based on the data provided by JWST's two imager cameras, namely the Near Infrared Camera (NIRCam) and the Mid Infrared Imager (MIRI). In this work we analyze the effect of choosing different combinations of NIRCam and MIRI broad-band filters, from 0.6 {\mu}m to 7.7 {\mu}m, on the recovery of these galaxy properties. We performed our tests on a sample of 1542 simulated galaxies, with known input properties, at z=7-10. We found that, with only 8 NIRCam broad-bands, we can recover the galaxy age within 0.1 Gyr and the color excess within 0.06 mag for 70% of the galaxies. Besides, the stellar masses and sSFR are recovered within 0.2 and 0.3 dex, respectively, at z=7-9. Instead, at z=10, no NIRCam band traces purely the {\lambda}> 4000 {\AA} regime and the percentage of outliers in stellar mass (sSFR) increases by > 20% (> 90%), in comparison to z=9. The MIRI F560W and F770W bands are crucial to improve the stellar mass and the sSFR estimation at z=10. When nebular emission lines are present, deriving correct galaxy properties is challenging, at any redshift and with any band combination. In particular, the stellar mass is systematically overestimated in up to 0.3 dex on average with NIRCam data alone and including MIRI observations improves only marginally the estimation.Comment: 21 pages, 11 figures, 4 tables. Accepted for publication at the ApJ

    Local Anomalies, Local Equivariant Cohomology and the Variational Bicomplex

    Full text link
    The locality conditions for the vanishing of local anomalies in field theory are shown to admit a geometrical interpretation in terms of local equivariant cohomology, thus providing a method to deal with the problem of locality in the geometrical approaches to the study of local anomalies based on the Atiyah-Singer index theorem. The local cohomology is shown to be related to the cohomology of jet bundles by means of the variational bicomplex theory. Using these results and the techniques for the computation of the cohomology of invariant variational bicomplexes in terms of relative Gel'fand-Fuks cohomology introduced in [6], we obtain necessary and sufficient conditions for the cancellation of local gravitational and mixed anomalies.Comment: 36 pages. The paper is divided in two part

    Lumped element kinetic inductance detectors maturity for space-borne instruments in the range between 80 and 180 GHz

    Full text link
    This work intends to give the state-of-the-art of our knowledge of the performance of LEKIDs at millimetre wavelengths (from 80 to 180~GHz). We evaluate their optical sensitivity under typical background conditions and their interaction with ionising particles. Two LEKID arrays, originally designed for ground-based applications and composed of a few hundred pixels each, operate at a central frequency of 100, and 150~GHz (ΔΜ/Îœ\Delta \nu / \nu about 0.3). Their sensitivities have been characterised in the laboratory using a dedicated closed-circle 100~mK dilution cryostat and a sky simulator, allowing for the reproduction of realistic, space-like observation conditions. The impact of cosmic rays has been evaluated by exposing the LEKID arrays to alpha particles (241^{241}Am) and X sources (109^{109}Cd) with a readout sampling frequency similar to the ones used for Planck HFI (about 200~Hz), and also with a high resolution sampling level (up to 2~MHz) in order to better characterise and interpret the observed glitches. In parallel, we have developed an analytical model to rescale the results to what would be observed by such a LEKID array at the second Lagrangian point.Comment: 7 pages, 2 tables, 13 figure

    KMOS LENsing Survey (KLENS) : morpho-kinematic analysis of star-forming galaxies at z∌2z \sim 2

    Get PDF
    We present results from the KMOS lensing survey-KLENS which is exploiting gravitational lensing to study the kinematics of 24 star forming galaxies at 1.4<z<3.51.4<z<3.5 with a median mass of log(M⋆/M⊙)=9.6\rm log(M_\star/M_\odot)=9.6 and median star formation rate (SFR) of 7.5 M⊙ yr−1\rm 7.5\,M_\odot\,yr^{-1}. We find that 25% of these low-mass/low-SFR galaxies are rotation dominated, while the majority of our sample shows no velocity gradient. When combining our data with other surveys, we find that the fraction of rotation dominated galaxies increases with the stellar mass, and decreases for galaxies with a positive offset from the main sequence. We also investigate the evolution of the intrinsic velocity dispersion, σ0\sigma_0, as a function of the redshift, zz, and stellar mass, M⋆\rm M_\star, assuming galaxies in quasi-equilibrium (Toomre Q parameter equal to 1). From the z−σ0z-\sigma_0 relation, we find that the redshift evolution of the velocity dispersion is mostly expected for massive galaxies (log(M⋆/M⊙)>10\rm log(M_\star/M_\odot)>10). We derive a M⋆−σ0\rm M_\star-\sigma_0 relation, using the Tully-Fisher relation, which highlights that a different evolution of the velocity dispersion is expected depending on the stellar mass, with lower velocity dispersions for lower masses, and an increase for higher masses, stronger at higher redshift. The observed velocity dispersions from this work and from comparison samples spanning 0<z<3.50<z<3.5 appear to follow this relation, except at higher redshift (z>2z>2), where we observe higher velocity dispersions for low masses (log(M⋆/M⊙)∌9.6\rm log(M_\star/M_\odot)\sim 9.6) and lower velocity dispersions for high masses (log(M⋆/M⊙)∌10.9\rm log(M_\star/M_\odot)\sim 10.9) than expected. This discrepancy could, for instance, suggest that galaxies at high-zz do not satisfy the stability criterion, or that the adopted parametrisation of the specific star formation rate and molecular properties fail at high redshift.Comment: Accepted for publication in A&A, 21 pages, 10 figure

    Introduction

    Get PDF
    Editors\u27 introductio
    • 

    corecore