6 research outputs found

    Decrypting the Origin and Pathogenesis in Pregnant Ewes of a New Ovine Pestivirus Closely Related to Classical Swine Fever Virus

    Get PDF
    This study shows the origin and the pathogenic role of a novel ovine pestivirus (OVPV) isolated in 2017 in Italy, as a pathogenic agent causing severe abortions after infection in pregnant ewes and high capacity for virus trans-placental transmission as well as the birth of lambs suffering OVPV-persistent infection. The OVPV infection induced early antibody response detected by the specific ELISA against classical swine fever virus (CSFV), another important virus affecting swine. The neutralizing antibody response were similar against CSFV strains from genotype 2 and the OVPV. These viruses showed high identity in the B/C domain of the E2-glycoprotein. Close molecular diagnostics cross-reactivity between CSFV and OVPV was found and a new OVPV molecular assay was developed. The phylodynamic analysis showed that CSFV seems to have emerged as the result of an inter-species jump of Tunisian sheep virus (TSV) from sheep to pigs. The OVPV and the CSFV share the TSV as a common ancestor, emerging around 300 years ago. This suggests that the differentiation of TSV into two dangerous new viruses for animal health (CSFV and OVPV) was likely favored by human intervention for the close housing of multiple species for intensive livestock production.info:eu-repo/semantics/publishedVersio

    Decrypting the Origin and Pathogenesis in Pregnant Ewes of a New Ovine Pestivirus Closely Related to Classical Swine Fever Virus

    Get PDF
    This study shows the origin and the pathogenic role of a novel ovine pestivirus (OVPV) isolated in 2017 in Italy, as a pathogenic agent causing severe abortions after infection in pregnant ewes and high capacity for virus trans-placental transmission as well as the birth of lambs suffering OVPV-persistent infection. The OVPV infection induced early antibody response detected by the specific ELISA against classical swine fever virus (CSFV), another important virus affecting swine. The neutralizing antibody response were similar against CSFV strains from genotype 2 and the OVPV. These viruses showed high identity in the B/C domain of the E2-glycoprotein. Close molecular diagnostics cross-reactivity between CSFV and OVPV was found and a new OVPV molecular assay was developed. The phylodynamic analysis showed that CSFV seems to have emerged as the result of an inter-species jump of Tunisian sheep virus (TSV) from sheep to pigs. The OVPV and the CSFV share the TSV as a common ancestor, emerging around 300 years ago. This suggests that the differentiation of TSV into two dangerous new viruses for animal health (CSFV and OVPV) was likely favored by human intervention for the close housing of multiple species for intensive livestock production

    The new emerging ovine pestivirus can infect pigs and confers strong protection against classical swine fever virus

    Get PDF
    Several emerging pestiviruses have been reported lately, some of which have proved to cause disease. Recently, a new ovine pestivirus (OVPV), isolated from aborted lambs, with high genetic identity to classical swine fever virus (CSFV), has proved to induce reproductive disorders in pregnant ewes. OVPV also generated strong serological and molecular cross‐reaction with CSFV. To assess the capacity of OVPV to infect swine, twelve piglets were infected either by intranasal or intramuscular route. Daily clinical evaluation and weekly samplings were performed to determine pathogenicity, viral replication and excretion and induction of immune response. Five weeks later, two pigs from each group were euthanized and tissue samples were collected to study viral replication and distribution. OVPV generated only mild clinical signs in the piglets, including wasting and polyarthritis. The virus was able to replicate, as shown by the RNA levels found in sera and swabs and persisted in tonsil for at least 5 weeks. Viral replication activated the innate and adaptive immunity, evidenced by the induction of interferon‐alpha levels early after infection and cross‐neutralizing antibodies against CSFV, including humoural response against CSFV E2 and Erns glycoproteins. Close antigenic relation between OVPV and CSFV genotype 2.3 was detected. To determine the OVPV protection against CSFV, the OVPV‐infected pigs were challenged with a highly virulent strain. Strong clinical, virological and immunological protection was generated in the OVPV‐infected pigs, in direct contrast with the infection control group. Our findings show, for the first time, the OVPV capacity to infect swine, activate immunity, and the robust protection conferred against CSFV. In addition, their genetic and antigenic similarities, the close relationship between both viruses, suggest their possible coevolution as two branches stemming from a shared origin at the same time in two different hosts.info:eu-repo/semantics/acceptedVersio

    Investigation of chronic and persistent classical swine fever infections under field conditions and their impact on vaccine efficacy

    Get PDF
    Background: Recent studies have hypothesized that circulation of classical swine fever virus (CSFV) variants when the immunity induced by the vaccine is not sterilizing might favour viral persistence. Likewise, in addition to congenital viral persistence, CSFV has also been proven to generate postnatal viral persistence. Under experimental conditions, postnatal persistently infected pigs were unable to elicit a specific immune response to a CSFV live attenuated vaccine via the mechanism known as superinfection exclusion (SIE). Here, we study whether subclinical forms of classical swine fever (CSF) may be present in a conventional farm in an endemic country and evaluate vaccine efficacy under these types of infections in field conditions. Results: Six litters born from CSF-vaccinated gilts were randomly chosen from a commercial Cuban farm at 33 days of age (weaning). At this time, the piglets were vaccinated with a lapinized live attenuated CSFV C-strain vaccine. Virological and immunological analyses were performed before and after vaccination. The piglets were clinically healthy at weaning; however, 82% were viraemic, and the rectal swabs in most of the remaining 18% were positive. Only five piglets from one litter showed a specific antibody response. The tonsils and rectal swabs of five sows were CSFV positive, and only one of the sows showed an antibody response. After vaccination, 98% of the piglets were unable to clear the virus and to seroconvert, and some of the piglets showed polyarthritis and wasting after 36 days post vaccination. The CSFV E2 glycoprotein sequences recovered from one pig per litter were the same. The amino acid positions 72(R), 20(L) and 195(N) of E2 were identified in silico as positions associated with adaptive advantage. Conclusions: Circulation of chronic and persistent CSF infections was demonstrated in field conditions under a vaccination programme. Persistent infection was predominant. Here, we provide evidence that, in field conditions, subclinical infections are not detected by clinical diagnosis and, despite being infected with CSFV, the animals are vaccinated, rather than diagnosed and eliminated. These animals are refractory to vaccination, likely due to the SIE phenomenon. Improvement of vaccination strategies and diagnosis of subclinical forms of CSF is imperative for CSF eradication

    Novel poly-uridine insertion in the 3'UTR and E2 amino acid substitutions in a low virulent classical swine fever virus.

    No full text
    In this study, we compared the virulence in weaner pigs of the Pinar del Rio isolate and the virulent Margarita strain. The latter caused the Cuban classical swine fever (CSF) outbreak of 1993. Our results showed that the Pinar del Rio virus isolated during an endemic phase is clearly of low virulence. We analysed the complete nucleotide sequence of the Pinar del Rio virus isolated after persistence in newborn piglets, as well as the genome sequence of the inoculum. The consensus genome sequence of the Pinar del Rio virus remained completely unchanged after 28days of persistent infection in swine. More importantly, a unique poly-uridine tract was discovered in the 3'UTR of the Pinar del Rio virus, which was not found in the Margarita virus or any other known CSFV sequences. Based on RNA secondary structure prediction, the poly-uridine tract results in a long single-stranded intervening sequence (SS) between the stem-loops I and II of the 3'UTR, without major changes in the stem- loop structures when compared to the Margarita virus. The possible implications of this novel insertion on persistence and attenuation remain to be investigated. In addition, comparison of the amino acid sequence of the viral proteins E, E1, E2 and p7 of the Margarita and Pinar del Rio viruses showed that all non-conservative amino acid substitutions acquired by the Pinar del Rio isolate clustered in E2, with two of them being located within the B/C domain. Immunisation and cross-neutralisation experiments in pigs and rabbits suggest differences between these two viruses, which may be attributable to the amino acid differences observed in E2. Altogether, these data provide fresh insights into viral molecular features which might be associated with the attenuation and adaptation of CSFV for persistence in the field
    corecore