16 research outputs found

    LSD1 modulates the non-canonical integrin β3 signaling pathway in non-small cell lung carcinoma cells

    No full text
    The epigenetic writer lysine-specific demethylase 1 (LSD1) is aberrantly upregulated in many cancer types and its overexpression correlates with poor survival and tumor progression. In this study, we analysed LSD1 function in non-small cell lung cancer adenocarcinomas. Expression profiling of 182 cases of lung adenocarcinoma proved a significant correlation of LSD1 overexpression with lung adenocarcinoma progression and metastasis. KRAS-mutated lung cancer cell clones were stably silenced for LSD1 expression. RNA-seq and comprehensive pathway analysis revealed, that genes related to a recently described non-canonical integrin β3 pathway, were significantly downregulated by LSD1 silencing. Hence, invasion and self-renewal capabilities were strongly decreased. Notably, this novel defined LSD1/integrin β3 axis, was also detected in human lung adenocarcinoma specimens. Furthermore, the linkage of LSD1 to an altered expression pattern of lung-lineage specific transcription factors and genes, which are involved in alveolar epithelial differentiation, was demonstrated. Thus, our findings point to a LSD1-integrin β3 axis, conferring attributes of invasiveness and tumor progression to lung adenocarcinoma

    How genomics can help biodiversity conservation

    Get PDF
    The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.info:eu-repo/semantics/publishedVersio

    The era of reference genomes in conservation genomics

    Get PDF
    Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics

    The era of reference genomes in conservation genomics

    Get PDF
    info:eu-repo/semantics/publishedVersio

    The era of reference genomes in conservation genomics

    Get PDF
    Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics

    How genomics can help biodiversity conservation

    Get PDF
    The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics
    corecore