74 research outputs found

    Autonomous car parking system with various trajectories

    Get PDF
    In this study, an algorithm presents a solution to 4-wheel-car parking. This algorithm is suitable for parallel parking between two objects or two cars. Firstly the system verifies whether enough space. After finding a valid parking space, system makes the suitable movements for a perfect parking. This parking operation is tested in a simulation environment using MatLab-Simulink

    FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

    Full text link
    The ability to estimate epistemic uncertainty is often crucial when deploying machine learning in the real world, but modern methods often produce overconfident, uncalibrated uncertainty predictions. A common approach to quantify epistemic uncertainty, usable across a wide class of prediction models, is to train a model ensemble. In a naive implementation, the ensemble approach has high computational cost and high memory demand. This challenges in particular modern deep learning, where even a single deep network is already demanding in terms of compute and memory, and has given rise to a number of attempts to emulate the model ensemble without actually instantiating separate ensemble members. We introduce FiLM-Ensemble, a deep, implicit ensemble method based on the concept of Feature-wise Linear Modulation (FiLM). That technique was originally developed for multi-task learning, with the aim of decoupling different tasks. We show that the idea can be extended to uncertainty quantification: by modulating the network activations of a single deep network with FiLM, one obtains a model ensemble with high diversity, and consequently well-calibrated estimates of epistemic uncertainty, with low computational overhead in comparison. Empirically, FiLM-Ensemble outperforms other implicit ensemble methods, and it and comes very close to the upper bound of an explicit ensemble of networks (sometimes even beating it), at a fraction of the memory cost.Comment: accepted at NeurIPS 202

    Self-healing capability of large-scale engineered cementitious composites beams

    Get PDF
    YesEngineered Cementitious Composites (ECC) is a material which possesses advanced self-healing properties. Although the self-healing performance of ECC has been revealed in numerous studies, only small-scale, laboratory-size specimens have been used to assess it under fixed laboratory conditions and curing techniques. In order to evaluate the effect of intrinsic self-healing ability of ECC on the properties of structural-size, large-scale reinforced-beam members, specimens with four different shear span to effective depth (a/d) ratios, ranging from 1 to 4, were prepared to evaluate the effects of shear and flexural deformation. To ensure a realistic assessment, beams were cured using wet burlap, similar to on-site curing. Each beam was tested for mechanical properties including load-carrying capacity, deflection capacity, ductility ratio, yield stiffness, energy absorption capacity, and the influence of self-healing, by comparing types of failure and cracking. Self-healed test beams showed higher strength, energy absorption capacity and ductility ratio than damaged test beams. In test beams with an a/d ratio of 4 in which flexural behavior was prominent, self-healing application was highly successful; the strength, energy absorption capacity and ductility ratios of these beams achieved the level of undamaged beams. In addition, flexural cracks healed better, helping recover the properties of beams with predominantly flexural cracks rather than shear cracks.The authors gratefully acknowledge the financial assistance of the Scientific and Technical Research Council (TUBITAK) of Turkey provided under Project: MAG-112M876 and the Turkish Academy of Sciences, Young Scientist Award program. The second author would also like to acknowledge the financial support of TÜBITAK for the 2219 Scholarship

    Performance assessment of shell and tube heat exchanger based subcritical and supercritical organic Rankine cycles

    No full text
    In this study, thermal models for subcritical and supercritical geothermal powered organic Rankine cycles are developed to compare the performance of these cycle configurations. Both of these models consist of a detailed model for the shell and tube heat exchanger integrating the geothermal and organic Rankine cycles sides and basic thermodynamic models for the rest of the components of the cycle. In the modeling of the heat exchanger, this component was divided into several zones and the outlet conditions of each zone were found applying logarithmic mean temperature difference method. Different Nusselt correlations according to the relevant phase (single, two-phase, and supercritical) were also included in this model. Using the system-level model, the effect of the source temperature on the performances of the heat exchanger and the organic Rankine cycle was assessed. These performance parameters are heat transfer surface area and pressure drop of tube side fluid for the heat exchanger, and electrical and exergetic efficiencies of the integrated organic Rankine cycles system. It was found that 44.12% more net power is generated when the supercritical organic Rankine cycle is used compared to subcritical organic Rankine cycle

    Performance assessment of shell and tube heat exchanger based subcritical and supercritical organic Rankine cycles

    No full text
    In this study, thermal models for subcritical and supercritical geothermal powered organic Rankine cycles are developed to compare the performance of these cycle configurations. Both of these models consist of a detailed model for the shell and tube heat exchanger integrating the geothermal and organic Rankine cycles sides and basic thermodynamic models for the rest of the components of the cycle. In the modeling of the heat exchanger, this component was divided into sever¬al zones and the outlet conditions of each zone were found applying logarithmic mean temperature difference method. Different Nusselt correlations according to the relevant phase (single, two-phase, and supercritical) were also included in this model. Using the system-level model, the effect of the source temperature on the performances of the heat exchanger and the organic Rankine cycle was assessed. These performance parameters are heat transfer surface area and pressure drop of tube side fluid for the heat exchanger, and electrical and exergetic efficiencies of the integrated organic Rankine cycles system. It was found that 44.12% more net power is generated when the supercritical organic Rankine cycle is used compared to subcritical organic Rankine cycle
    corecore