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Abstract  10 

 11 

Engineered Cementitious Composites (ECC) is a material which possesses advanced self-12 

healing properties. Although the self-healing performance of ECC has been revealed in 13 

numerous studies, only small-scale, laboratory-size specimens have been used to assess it 14 

under fixed laboratory conditions and curing techniques. In order to evaluate the effect of 15 

intrinsic self-healing ability of ECC on the properties of structural-size, large-scale 16 

reinforced-beam members, specimens with four different shear span to effective depth (a/d) 17 

ratios, ranging from 1 to 4, were prepared to evaluate the effects of shear and flexural 18 

deformation. To ensure a realistic assessment, beams were cured using wet burlap, similar to 19 

on-site curing. Each beam was tested for mechanical properties including load-carrying 20 

capacity, deflection capacity, ductility ratio, yield stiffness, energy absorption capacity, and 21 

the influence of self-healing, by comparing types of failure and cracking. Self-healed test 22 

beams showed higher strength, energy absorption capacity and ductility ratio than damaged 23 

test beams. In test beams with an a/d ratio of 4 in which flexural behavior was prominent, 24 

self-healing application was highly successful; the strength, energy absorption capacity and 25 

ductility ratios of these beams achieved the level of undamaged beams. In addition, flexural 26 

cracks healed better, helping recover the properties of beams with predominantly flexural 27 

cracks rather than shear cracks. 28 

 29 
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1. Introduction 1 

 2 

Concrete is the most widely used construction material in the world. However, its brittle 3 

behavior and low tensile strength affect not only mechanical performance, but also influence 4 

durability through cracking, limiting the service life of reinforced concrete structures and 5 

requiring maintenance and repair to ensure serviceability. Repairing concrete structures is not 6 

an easy task; it is expensive and requires specialized expertise and materials. For example, 7 

approximately $5.2 billion is spent each year to maintain existing bridges in the United States 8 

[1]; the estimated budget for reconstructing them is between $20 billion and  $200 billion [2-9 

3]. The situation is similar around the globe; 45% of the construction and building budget in 10 

the United Kingdom is spent on repair and maintenance applications [4]. Annual maintenance 11 

and repair costs are also substantial for the European Union countries, with actual spending of 12 

around $1 billion for the maintenance of bridges, with an estimated $20 billion for all 13 

infrastructure types [5]. However, over the last two decades, the self-healing capabilities of 14 

cementitious materials have become an attractive solution for reducing maintenance and 15 

repair costs; materials with self-healing ability have the potential of recovering their 16 

properties after cracking. Studies have shown that the mechanical performance and transport 17 

properties of these kinds of materials can be re-attained, and that even after substantial 18 

damage, the self-healing mechanism can help the material reach its initial properties and 19 

behave as if it had never been subjected to damage. Numerous self-healing techniques have 20 

emerged, some requiring unconventional ingredients such as hollow fibers, encapsulation 21 

with chemicals, bacteria, expansive agents and shape memory materials [6-7]. One 22 

mechanism is autogenous or intrinsic self-healing, which involves the plugging of cracks with 23 

materials incorporated into the cementitious composite, without any additional process or 24 

agent. It has been reported that the mechanism of intrinsic self-healing is a consequence of the 25 

chemical, mechanical and physical closure of existing cracks. This kind of self-healing is 26 

generally attributed to the hydration of previously unhydrated cementitious material, calcite 27 

formation, expansion of concrete in the crack flanks, crystallization, closing of cracks by solid 28 

matter in the water, and closing of cracks by spalling of loose concrete particles resulting 29 

from cracking [8]. Self-healing should be taken into account when specifying tolerable crack 30 

widths. Jacobsen et al. [8], Reinhardt and Joss [9], Sahmaran and Yaman [10], Edvardsen 31 

[11], Aldea et al. [12] and Clear [13] have proposed maximum crack widths of 5–10 µm, 100 32 

µm, 200 µm, 205 µm and 300 µm, respectively, for a crack to seal itself completely. Overall, 33 

the most serious challenge for complete healing is tolerable crack width. Since conventional 34 
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concrete has the tendency to deform in a brittle manner under mechanical loading, attaining 1 

such small crack widths is a major concern. However, the situation is different for ECC, 2 

which deforms in a ductile manner and is characterized by tensile strain hardening and 3 

flexural deflection hardening properties. These are the result of self-controlled multiple tight 4 

cracks that remain under 100 µm, and are likely to promote intrinsic self-healing ability. In 5 

addition, ECC material contains large amounts of supplementary cementitious materials, 6 

which also make it possible for unhydrated cementitious material to exist in the structure, 7 

allowing further hydrates to fill up the microcracks. ECC is a prominent intrinsic self-healing 8 

construction material, well-documented in the literature [7]. 9 

 10 

However, studies focusing on the influence of self-healing on a structural scale are limited. 11 

One study into reinforced large-scale structural members was performed by Tran Diep et al. 12 

[14], in which four-point bending tests were performed on relatively large beams (125 mm × 13 

200 mm × 2000 mm) containing encapsulated epoxy. Dry [15] also investigated the 14 

possibility of obtaining autonomous crack healing in a real-scale concrete bridge deck (76 mm 15 

x 1220 mm x 6096 mm) using adhesive-filled glass tubes. However, no study has been 16 

conducted into the self-healing ability of ECC on a structural scale. Numerous studies into 17 

ECC’s self-healing capability are restricted by their use of small specimens with no 18 

reinforcement and single-type microcracks formed by tensile or flexural loading. However, 19 

the authors believe that a study into the effects of self-healing behavior of large-scale ECC 20 

members on important structural parameters such as strength, stiffness, ductility, energy 21 

absorption capacity and failure mechanism should be conducted to promote the use of such a 22 

successful self-healing material in real structures. Although ECC is a perfect material in terms 23 

of ductility and self-healing as determined under laboratory conditions, yet studies on large 24 

scale ECC members are quite limited. This deprives construction industry from the benefits of 25 

structural use of ECC. This study may help ECC to be recognized as a structural material and 26 

pave the way for a successful use of ECC in structural members. Successful and widespread 27 

implementation of ECC may yield more ductile hence more durable structures with smaller 28 

construction budgets for repair and retrofitting.      29 

 30 

In addition, any construction material can be damaged in an earthquake or due to induced 31 

stresses originating from durability concerns and unpredicted load conditions. However, ECC 32 

has the potential to eliminate the need for repair as a result of its intrinsic self-healing 33 

capability. For this reason, beams were subjected to curing for as little as 30 days after being 34 
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damaged to assess whether self-healing mechanisms of ECC can replace repair, which would 1 

be a great benefit for the construction industry.  2 

 3 

This paper outlines an experimental investigation into the self-healing performance of large-4 

scale reinforced ECC beam specimens. The main variables investigated were the shear span to 5 

effective depth (a/d) ratios of the reinforced ECC beams. This was mainly intended to reflect 6 

real-life cracking behavior of reinforced composites; crack formation is possible due to both 7 

shearing and bending effects. For this purpose, four different a/d ratios were chosen, ranging 8 

between 1 and 4. To examine the self-healing performance of reinforced ECC beams, twelve 9 

beam specimens, including three beams from each test group, were tested under four-point 10 

bending loading. The study investigated the effect of self-healing performance on structural 11 

characteristics such as strength, stiffness, ductility ratio, energy absorption capacity and 12 

failure mechanisms of test members and the way they are influenced by self-healing. 13 

 14 

2. Experimental Program 15 

 16 

2.1 Test specimens and material properties 17 

 18 

To evaluate self-healing characteristics of large-scale reinforced ECC beams, specimens with 19 

different shear span (a) to effective depth (d) ratios were tested under the four-point bending 20 

test. The a/d ratios of reinforced ECC beam specimens ranged from 1 to 4 so that shearing 21 

effects could be observed. According to Fig. 1 [17], which describes the changes in failure 22 

modes of reinforced concrete beams with respect to a/d ratio, as a/d ratio decreased, the 23 

possibility of shear failure increased. Therefore, a low ratio between 1 and 3 was selected to 24 

promote shear failure and monitor the behavior of test specimens under the influence of shear 25 

forces. Additionally, a high a/d ratio of 4 was used to obtain a different failure mode, which 26 

was expected to be a combination of shear and flexural failure mechanisms.  27 

 28 

All test beams were produced with the same amount of reinforcement, obtained from the same 29 

supplier throughout the study. Geometric dimensions and steel reinforcement details of test 30 

specimens are shown in Fig. 2. Main longitudinal tensile reinforcements of 216 were used 31 

for all a/d ratios. The yield strength (fsy), ultimate strength (fsu) and elastic modulus (E) of 16 32 

ribbed steel bars were determined as 520 MPa, 625 MPa and 205 GPa, respectively. Only a 33 

small amount of shear reinforcement was placed at the support regions to prevent local failure 34 
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at those points. No additional shear reinforcement was applied along the beam length. Shear 1 

reinforcing bars had a 10 mm diameter, with 428 MPa yield strength, 535 MPa ultimate 2 

strength and 198 GPa elastic modulus. The main test specimen parameters are presented in 3 

Table 1. 4 

 5 

Three groups of reinforced beam specimens with four a/d ratios were produced and tested for 6 

the study. The main aim was to examine the effects of self-healing performance on major 7 

residual structural parameters such as load-deformation behavior, strength, stiffness, ductility 8 

ratio and energy absorption capacity. The effects of the change in a/d ratio on self-healing 9 

performance of beams were also examined. In the nomenclature of the test members provided 10 

in Table 1, the first three characters show the a/d ratio, while the last three characters 11 

designate the test age: 28 or 58 days (28D or 58D). “V” in the beam notations means that the 12 

beam is virgin, i.e. it is the reference value. “PL” refers to the fact that a preloading up to 50% 13 

of the maximum load-carrying capacity was applied on the beam specimens. “SH,” which 14 

appears in the last four test members, means that the self-healing process was applied on those 15 

beams.  16 

 17 

In the first test group, one reference beam was tested until failure for each a/d ratio at the end 18 

of 28 days of standard curing to determine load-carrying capacities (specimens 1, 2, 3 and 4). 19 

Two sets of experiments were performed on specimens 5, 6, 7 and 8 (second test group). At 20 

28 days, those specimens were preloaded up to 50% of their maximum load-carrying 21 

capacities, as determined from the reference beams. After removing the load, the damaged 22 

beam specimens were reloaded immediately up to failure without considering the effect of 23 

self-healing. Results obtained from the second group test specimens showed the behavior of 24 

damaged beams under loading. Beams belonging to the third group (specimens 9, 10, 11 and 25 

12) were tested in the same two stages as the second group. At 28 days, all beams were 26 

preloaded up to 50% of their maximum load-carrying capacities, then the loads were removed 27 

immediately. After removal of the load, the damaged beams were kept in laboratory 28 

conditions at 23±1 ºC, covered in wet burlap which was rewetted three times a week. This 29 

curing condition was chosen to imitate in situ conditions, as it is common practice to cover 30 

structural members in wet burlap, and it is also possible to apply a similar curing method in 31 

real structures. The necessary moisture for self-healing of damaged beam specimens was 32 

supplied solely by the wet burlap, which was covered with plastic sheets to prevent moisture 33 

loss during curing. Fig. 3 shows the curing conditions of specimens subjected to the self-34 
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healing process. The damaged beam specimens were left for self-healing to develop for an 1 

additional 30 days. At 58 days after casting, beams 9, 10, 11 and 12 were loaded up to failure 2 

to evaluate self-healing performance compared to the other two test series. 3 

 4 

ECC mixtures used for all test specimens were produced with identical proportions of the 5 

same ingredients to ensure similar properties. ECC has ingredients which are similar to those 6 

of typical fiber-reinforced concrete; CEM I 42.5 type cement (similar to ASTM Type I), Class 7 

F fly ash, aggregate, water, fibers, and a high-range water-reducing admixture (HRWRA) 8 

were employed for ECC production in this study. Mixture proportions are presented in Table 9 

2. The ECC mixture had a water to cementitious material ratio (W/CM) of 0.27 and a fly ash 10 

to Portland cement ratio (FA/PC) of 2.2, by mass. In order to obtain multiple microcracking 11 

and consequently strain-hardening behavior, it is necessary to minimize matrix fracture 12 

toughness. For this purpose, only fine aggregates were used for ECC production; silica sand 13 

with a maximum particle size of 1 mm was incorporated into the ECC mixtures used for the 14 

production of the beams. Straight poly-vinyl-alcohol (PVA) fibers with a tensile strength of 15 

1610 MPa, an average diameter of 39 μm, and an average length of 8 mm as provided by the 16 

manufacturer were used in the mixture as 2% of the total volume. HRWRA was added until 17 

the desired fresh ECC characteristics were visually observed, as described in [18]. 18 

Compressive strength of the ECC mixtures was determined as the average of six Ø100×200 19 

mm cylinder specimens. Flexural strength and deflection were determined by testing six 20 

400×100×75 mm beam specimens. Four-point bending tests were performed at a loading rate 21 

of 0.005 mm/s, using a universal testing machine for the flexural parameters. As shown in 22 

Table 2, 28-day compressive and flexural strengths were 46.1 MPa and 7.41 MPa, 23 

respectively. Besides, mid-span beam deflection at 28-days was measured as 4.52 mm. 24 

 25 

2.2 Test setup and instrumentation 26 

 27 

A four-point bending test setup was used to evaluate the behavior and self-healing 28 

performance of reinforced ECC beams with different a/d ratios under flexural loading. Mid-29 

span beam deflection, crack width in both shear spans and strain in tensile reinforcements 30 

were recorded at each load increment. The test setup and locations of LVDTs are shown in 31 

Fig. 4. 32 

 33 
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To plot the load-deflection curves of the ECC beams, the vertical deflection values recorded 1 

at the mid-span of the maximum moment region and three points on both symmetrical sides 2 

of the beams were considered. Strength, stiffness, ductility ratio and energy absorption 3 

capacity for the virgin (group 1), damaged (group 2) and self-healed (group 3) beams were 4 

determined from the load-deflection curves. For strain measurements of tensile reinforcement, 5 

strain gauges were attached at the maximum moment regions of both reinforcing steel bars 6 

before casting.  7 

 8 

Shear deformation resulting from shear cracks was calculated using three LVDTs, 9 

symmetrically placed on the left and right shear spans of the beams. These were, in turn, used 10 

to calculate shear deformation percentage in total mid-span deflections (Fig. 4). As the 11 

distance of vertical shear deflections to mid-span was equal for the left and right spans, an 12 

average of the results from both sides of each beam was recorded. Fig. 5 provides the 13 

approach used for this calculation, along with the strain geometry. Vertical shear deflection, 14 

the component of LVDT measurements recorded from left and right shear spans, was 15 

calculated using Equations 1, 2, 3 and 4. Definitions of notations used in Eqs. (1) to (4) are 16 

also shown in Fig. 5.  17 

  18 

  19 

 20 

 21 

(1) 

(2) 

(3) 

(4) 
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3. Experimental Results and Discussion 1 

 2 

3.1 General behavior and failure modes 3 

 4 

Load-deflection curves were obtained after loading the beams under four-point bending tests. 5 

Although load-controlled testing was adopted for flexural tests, a sample displacement ramp 6 

was also provided in Fig.6.  Obtained load-deflection curves are shown in Fig. 7 for each test 7 

group. Each test group included beam specimens with four different a/d ratios. In the first 8 

group, beams were loaded up to failure after 28 days of standard curing. The second group 9 

beams were initially loaded up to 50% of their load-carrying capacity (as determined from the 10 

first group), and immediately after unloading, were reloaded up to failure at 28 days to assess 11 

the effect of pre-damage. Beams in the third group were used to evaluate the self-healing 12 

characteristics of reinforced ECC; at the age of 28 days, loads of up to 50% of the beams’ 13 

load-carrying capacities were applied. After damage occurred, the load was removed. The 14 

pre-cracked beams were cured for an additional 30 days under wet burlap for self-healing. At 15 

the age of testing, beam specimens in the third group were tested until failure. For each test 16 

specimen, general behavior, failure mode, strength, stiffness, ductility and energy absorption 17 

capacity were determined from the load-deflection curves; the results are tabulated in Table 18 

3. Examples of crack distribution and failure modes of specimens after testing are also shown 19 

in Fig. 8. 20 

 21 

Beams from the first group were tested to determine the maximum load-carrying capacities of 22 

specimens with a/d ratios ranging between 1 and 4 at 28 days. Although the reinforced 23 

concrete beams produced with ECC did not have any shear reinforcement, most of the 24 

specimens showed flexural failure, and tensile reinforcement bars reached their yielding 25 

capacities. During loading for every beam specimen, cracks were initiated at the tension zone 26 

parallel to loading direction. As the load was increased, depending on the a/d ratio, diagonal 27 

cracks started to form close to the support points and propagated towards the loading point. 28 

Tensile reinforcements of beams 1, 2, 3 and 4 reached their yielding capacities under 403.60 29 

kN, 211.45 kN, 120.96 kN and 86.43 kN load levels, respectively. As the a/d ratio increased, 30 

the beams reached the yielding point at a higher displacement level, while showing lower 31 

stiffness. For the beam specimens tested, reinforcement bars yielded at a load level of 81-97% 32 

of the ultimate load-carrying capacity. Additionally, with the exception of the a/d ratio of 2, 33 

all beam specimens exhibited flexural failure due to crushing of concrete in the compression 34 
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zone. In the case of the a/d of 2, bending cracks initiated in the maximum moment zone. 1 

Then, as the load was increased, shear cracks formed in the right shear span. After the tensile 2 

reinforcement of the beam yielded, the specimen failed in a combination of flexural-shear 3 

behavior as a result of the enlargement of a shear crack in the right shear span (Fig. 8(a), (b), 4 

(c) and (d)). 5 

 6 

Beams from the second group were used to determine the effects of preloading on the 7 

behavior of test members. Beam specimens were pre-cracked at 28 days by loading up to 50% 8 

of their maximum load-carrying capacities. Sample load-deflection curves for the preloading 9 

stage are shown in Fig. 9. These curves show that as a/d ratio increased, deflection values at 10 

the maximum load state also increased. Upon removing the preload, all beam specimens 11 

experienced a permanent average plastic deflection of 1.37 mm, which indicates the success 12 

of the pre-damaging process. In addition, none of the beam reinforcement bars yielded during 13 

preloading. Since the reinforcing bars experienced loading under their elastic limit, the effect 14 

of pre-loading on reinforcing bars can be ignored. Average shear crack widths were measured 15 

as 0.32 mm and the mid-point displacement as a result of shear cracks was 0.49 mm. The 16 

preloaded beam specimens were loaded up to failure immediately after unloading. The tensile 17 

reinforcement bars achieved their yield capacities at 371.1 kN, 168.9 kN, 102.2 kN and 80.3 18 

kN load levels for a/d 1, 2, 3 and 4, respectively. These values are far below those obtained 19 

for sound specimens tested in the first group. Like the sound beam specimens, yield points 20 

were reached at a higher load level as the a/d ratio increased with lower yield stiffness. For 21 

beam specimens reloaded up to failure, reinforcement bars yielded at a load level of 77-95% 22 

of the ultimate load-carrying capacity. (Fig. 8(e), (f), (g) and (h)). 23 

 24 

Beam specimens in the third group were damaged by preloading up to 50% of their load-25 

carrying capacities at 28 days, similar to the specimens in the second group. After unloading, 26 

they were cured with wet burlap for the standard curing period of 30 days (58 days total) to 27 

encourage self-healing. At 58 days, all beams were loaded up to failure. As seen from the 28 

load-deflection curves for the preloading stage presented in Fig. 9, the beam specimens 29 

showed an average of 5.37 mm mid-point displacement due to preloading and 1.38 mm 30 

permanent plastic mid-point displacement upon unloading. As the a/d ratio of the beam 31 

specimens increased, the mid-point deflection and permanent plastic deflection values 32 

increased as well. Shear crack widths increased up to an average of 0.37 mm at the maximum 33 

load, causing an average mid-point displacement of 0.51 mm. After self-healing, the tensile 34 
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reinforcement of the beams yielded at 413.30 kN, 200.10 kN, 149.41 kN and 91.43 kN load 1 

levels for a/d 1, 2, 3, and 4, respectively, corresponding to 91.5-96.5% of the ultimate load-2 

carrying capacities. Without any change in the failure modes, self-healed beam specimens 3 

experienced similar performance in terms of load-carrying and deflection capacities to the 4 

sound specimens. All specimens showed flexural type of failure, except the beam with an a/d 5 

ratio of 2, which was loaded up to failure at 28 days and failed in a combination of shear and 6 

flexure. As a result, self-healing did not affect the failure type significantly. 7 

 8 

3.2 Load capacity and stiffness 9 

 10 

The yield stiffness and ultimate load-carrying capacity values of the beam specimens were 11 

determined from the load deflection curves provided in Figure 7 and tabulated in Table 3. 12 

Besides the shear span to effective depth ratio of the beams, self-healing – the major variable 13 

investigated in the scope of the experimental study – was found to be effective on yield and 14 

ultimate load-carrying capacity of test specimens. Considering the a/d ratio, both the yield 15 

strength and maximum load-carrying capacity values of the test specimens decreased with the 16 

increase in the a/d ratio. When test specimens in the first group were loaded directly up to 17 

failure, yield strength values decreased 48, 70 and 79% with a/d values of 2, 3 and 4 from 1, 18 

respectively. Ultimate load-carrying capacity values also showed decreases of 56, 71 and 82% 19 

in the same manner. For the remaining test groups, yield and ultimate load-carrying capacities 20 

dropped with increased a/d in the same manner.  21 

 22 

When specimens from the second group were loaded up to failure after subjected to 23 

preloading up to 50% of their ultimate load-carrying capacities, all yield and ultimate load-24 

carrying capacity values decreased. Yield strength and maximum load-carrying capacities of 25 

the first group specimens were an average of 15% and 10% higher than those of the second 26 

test group. The second group specimens exhibited the lowest strength throughout the 27 

experimental program, which was mainly attributed to the applied preloading, which lowers 28 

their damage tolerance. For beams in the second group, those with an a/d ratio of 2 29 

experienced the most dramatic decline in load-carrying capacity at yield. This behavior was 30 

attributed to the shear cracks that opened during preloading because shear cracks were denser 31 

than in the other beams. However the ultimate load-carrying capacity of this beam did not 32 

differ significantly. In spite of the small decline in ultimate load-carrying capacity, mid-span 33 

beam deflection values at both yield and failure almost halved. For the beam with an a/d ratio 34 
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of 1, shear cracks were also observed during preloading, although they were fewer in number. 1 

Preloading therefore did not affect load-carrying capacity at yield, but it significantly affected 2 

the ultimate load-carrying capacity and deflection at fracture. This difference between beams 3 

with a/d of 1 and 2 may be attributed to the fact that the yield and ultimate capacity of the 4 

beam with an a/d of 2 are too close to each other. Beams with an a/d ratio of 3 and 4 did not 5 

experience any shear cracking during preloading.The beam with a/d of 4 performed better in 6 

terms of load capacities and deflection values due to the limited number of finer cracks. It can 7 

be concluded that beams which experienced shear cracks during preloading also experienced 8 

greater decreases in their load and deflection capacities when they were loaded immediately 9 

up to failure after preloading. This may also be an outcome of the fact that shear cracks are 10 

significantly larger than bending cracks.    11 

 12 

To evaluate the effect of self-healing on yield strength and maximum load-carrying capacity 13 

values, the results of the third group were compared with those of the other test groups. The 14 

third group specimens were initially damaged and subsequently subjected to the self-healing 15 

process. When the third group beams were compared to those of the first group in terms of 16 

yield strength, all third group specimens reached higher values with the exception of those 17 

with an a/d ratio of 2. This outcome indicates that the self-healing process was extremely 18 

successful and escalated yield strength to the level of sound specimens that were not pre-19 

damaged. For specimens with an a/d ratio of 2, in which shear failure probability and damage 20 

was highest, yield strength was 5% lower. However, considering the devastating pre-21 

damaging process that decreased yield capacity by around 20%, there was about a 15% 22 

improvement as a result of self-healing even though original yield strength could not be 23 

recovered. Similar results were obtained for maximum load-carrying capacity values, except 24 

for test specimens with an a/d ratio of 1; the maximum load-carrying capacity value for the 25 

third group was 10% lower than that of the first group. For the third group, specimens 26 

exhibiting flexural failure had a/d ratios of 3 and 4, with an average maximum load-carrying 27 

capacity 7.5% higher than that of the first test group specimens. Although all specimens 28 

exhibited flexural-type failure upon reloading after self-healing, the type of cracking (shear or 29 

bending) during preloading influenced self-healing performance in terms of load-carrying 30 

capacity. Specimens with a/d ratios of 3 and 4, which showed only bending cracks on 31 

preloading (almost no shear cracks were observed), performed better. This finding is 32 

extremely important since it reveals that the self-healing process leads to less satisfactory 33 

results on test specimens with intense shear damage than for those with more bending 34 
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damage. When the yield strength and maximum load-carrying capacities of the specimens in 1 

the second group – which were tested after initial damage – were compared with third group 2 

specimens subjected to self-healing after initial damage, all a/d ratio capacities were an 3 

average of 22% and 11% higher for the third group specimens, respectively. These results 4 

point out the success of the self-healing process on healing damage and increasing strength. 5 

The best self-healing performance was observed for the beam with an a/d ratio of 3 in terms 6 

of yield and ultimate load-carrying capacities, when compared to the results of sound and 7 

preloaded specimens.  8 

 9 

Stiffness of the tested beams was calculated where specimens reached their yielding points 10 

(Table 3). When the yield stiffness of the test specimens was investigated, they significantly 11 

dropped with the increase in a/d ratio for all test groups. For example, in the first group 12 

specimens, yield stiffness values decreased 85, 91 and 95% respectively when a/d ratio was 13 

gradually increased from 1 to 4. Decrement rates in stiffness values were 71, 88 and 95% in 14 

the second group, and 70, 86 and 92% for the third group. When evaluating self-healing, 15 

stiffness values can be used to confirm crack plugging with self-healing products, as stiffness 16 

is expected to drop due to preloading. During application of the load, pre-opened cracks 17 

would easily re-open at lower load levels. As they were plugged with self-healing products, 18 

stiffness was expected to increase again. However, due to the presence of reinforcement bars, 19 

yield stiffness may not adequately reflect the self-healing behavior. It can therefore be 20 

concluded that unlike small-scale plain ECC specimens, in large-scale reinforced ECC beams, 21 

yield stiffness is not sensitive to self-healing.    22 

 23 

3.3 Ductility ratio 24 

 25 

Ductility ratio is defined as the deflection at failure, normalized by that at yield point. The 26 

level where the load is dropped down to 85% of the ultimate load-carrying capacity was 27 

chosen as the failure point. The ductility ratios of all beam specimens are presented in Table 28 

3. According to the results, they had a general tendency to decline as a/d ratios increased. The 29 

highest ductility ratios were achieved for beams with a/d ratios of 1 in every test groups. 30 

Although deflection at failure was the lowest for beams with an a/d ratio of 1, given the fact 31 

that the reinforcement bars yielded at a lower load and a lower deflection, the ductility ratio 32 

was the highest among all beams tested. Nonetheless, the lowest ductility ratios were obtained 33 

in beam specimens with an a/d ratio of 4. For a/d ratios of 2 and 3, for the first and second 34 
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groups, test beams with an a/d ratio of 2 showed lower ductility ratios. For the third group, 1 

beams with an a/d ratio of 3 showed lower ductility ratios. However, ductility ratios were 2 

quite similar for all test groups for a/d ratios of 2 and 3. For the pre-damaged beams in the 3 

second test group, ductility ratios were higher for those with a/d ratios of 2 and 3 and lower 4 

for those with a/d ratios of 1 and 4. Despite the fact that ductility ratio is expected to decline 5 

when the strength of regular concrete is decreased, the situation is quite different with 6 

reinforced ECC beams. Despite the fact that the pre-damaging process caused decreased 7 

deflection values at both yield and failure point, for beams that experienced escalation in 8 

ductility ratio after being pre-damaged, the main factor affecting the increase was the 9 

tremendous decrease in their deflection capacity at yield load. Because the pre-damaging 10 

process results in crack formation and decreases ECC strength, the increase in ductility ratio 11 

was unexpected. Unlike ordinary concrete, ECC has a deformation capacity of up to 300 12 

times that of ordinary concrete, which is effective on the deformation behavior of reinforced 13 

ECC beams. The deflection capacity of beams (with an a/d ratio of 2) that suffered shear 14 

cracks on pre-loading decreased 57 and 41% at yield and failure, respectively. The second 15 

highest decrease in deflection values was 28% at failure, exhibited in the beam with an a/d 16 

ratio of 1. It can therefore be concluded that deflection capacity was also affected negatively 17 

by the shear cracks. Upon self-healing, all beam specimens experienced decreases in ductility 18 

ratio except those with an a/d ratio of 4. In addition, all deflection values (both at yield and 19 

failure) of the beams belonging to test group 3 improved, which was attributed to self-healing 20 

of previously opened cracks during pre-loading. At the same time, beams with a/d ratios of 3 21 

and 4 recovered their ultimate deflection capacity the most. Among the self-healed beams, 22 

those with an a/d ratio of 3 showed only 10% lower deformation, while those with an a/d ratio 23 

of 4 showed a 30% increase over sound specimens tested at 28 days. These findings offer 24 

clear evidence of the success of the self-healing process, especially on beams with higher a/d 25 

ratios where pre-cracks formed only in the tensile zone.     26 

  27 

3.4 Energy absorption capacity 28 

 29 

Energy absorption capacities of the test beams were calculated as the area under load-30 

deflection curves up to failure point. The failure points were assumed when the load dropped 31 

to 85% of the ultimate load-carrying capacity, as in the case of ductility ratio determination. 32 

The results for all test specimens are listed in Table 3. As the a/d ratio increased, energy 33 

absorption capacity decreased significantly in each test group. For example, in the control 34 
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group (first group specimens), for a/d ratios of 1, 2, 3 and 4, the energy absorption capacities 1 

were 6113, 4269, 3093 and 945 kN-mm, respectively. The same declining trend was observed 2 

in the damaged (second group) and self-healed (third group) beam specimens.  3 

  4 

A comparison of the energy absorption capacities of the first and second group test beams 5 

revealed that preloading up to 50% of maximum load-carrying capacity caused more than 6 

40% reduction in energy absorption capacities for all a/d ratios. This was an expected result, 7 

as the crack formation in the damaged beams due to preloading increased brittleness. Due to 8 

preloading, both the load-carrying capacities and deformation amounts at failure decreased for 9 

all test beams, leading to a decrease in energy absorption capacities. 10 

 11 

The third group test beams were preloaded up to 50% of their maximum load-carrying 12 

capacities and left for 30 days in a moist environment for self-healing to develop. At the end 13 

of 58 days, self-healed beams were reloaded up to failure. For all a/d ratios, self-healing 14 

increased the energy absorption capacities of beam specimens by at least 30% of the damaged 15 

beam results. The energy absorption capacities of the third group beam specimens were 16 

greater than those of second group according to each a/d ratio, which offers evidence of crack 17 

closure due to self-healing effect. The damaged test beams regained their ductility to some 18 

degree due to self-healing. Both the ultimate load-carrying capacities and deflections at failure 19 

increased for the self-healed beams, as discussed in the previous sections. These increments 20 

were reflected in the energy absorption results. Crack closure as a result of self-healing 21 

improved the properties of all beams tested.  22 

 23 

When the energy absorption capacities of the first and third group test beams are compared, 24 

for a/d ratios of 1, 2 and 3, energy absorption capacities of control specimens tested at 28 days 25 

were greater than those of self-healed beams tested at 58 days. While the energy absorption 26 

capacities for a/d ratios of 1 and 2 were approximately 30% smaller in self-healed beams than 27 

in control specimens, the difference was approximately 8% for the a/d ratio of 3. Moreover, 28 

for the a/d ratio of 4, the energy absorption capacity of self-healed beams (1841 kN-mm) was 29 

much higher than in control specimens (945 kN-mm). The load-carrying capacity and 30 

deflection amount were also larger in self-healed beams with an a/d ratio of 4 than in the 31 

control beam. Beams cracked at 28 days with an a/d ratio of 4 showed crack closure, and the 32 

beam properties continued to develop during the additional 30 days of moist curing. The 33 

largest a/d ratio was chosen to promote a combination of shear and flexural failure. Self-34 
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healing appears to be more effective in flexural cracks when energy absorption capacity 1 

results are considered. 2 

 3 

3.5 Measured tensile reinforcement strains 4 

 5 

Table 3 illustrates the maximum strain values recorded for each beam, and Fig. 10 presents 6 

typical load-strain curves as an example. The yield strain of the steel bars used as tensile 7 

reinforcement in this study was 2549 με. 8 

 9 

When the tensile reinforcement strains of the test specimens were examined, all specimens 10 

except the control beam with a/d ratio of 2 showed strain values that exceeded the strain limit 11 

for yielding. These findings are consistent with the failure mechanisms of the beam 12 

specimens. The control beam specimen with an a/d ratio of 2 showed a combination of 13 

flexural and shear failure mode. On the other hand, all other beams experienced flexural 14 

failure mode after reaching the yield capacity of their tensile reinforcement. Strain 15 

measurements of the tensile reinforcements are also compatible with the general load-16 

deflection behaviors of the specimens.  17 

 18 

The maximum strain values of tensile reinforcing steel bars were also employed to ensure that 19 

steel reinforcements in the second and third group beams did not yield during the preloading 20 

stage. Preloading up to 50% of maximum load-carrying capacities did not cause yielding of 21 

their tensile reinforcements.   22 

 23 

3.6 Shear deflections 24 

 25 

Diagonal shear deflections were determined by LVDTs placed symmetrically on both shear 26 

spans of the beams. The vertical components of the average diagonal shear deflections 27 

obtained at left and right shear spans were calculated according to the approach presented in 28 

Fig. 5. Vertical shear deflections, maximum mid-point deflections and the percentage of 29 

vertical shear deflections with respect to maximum mid-point deflections are provided in 30 

Table 4. Vertical shear deflections due to cracks occurred in shear spans, and their percentage 31 

to mid-span beam deflections provide valuable information about the shear behavior of beam 32 

specimens. The higher the percentage of vertical shear deflection to maximum mid-span 33 

deflection, the higher the shear deflection, and hence a greater possibility of shear failure.  34 
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 1 

As seen in Table 4, the largest mid-point shear deflection and its percentage to mid-point 2 

deflection were obtained for an a/d ratio of 2 within each group. This is compatible with the 3 

fact that the sound beam with an a/d ratio of 2 was the only specimen that showed a 4 

combination of shear and flexural failure behavior (Table 3). When the results from the first 5 

and second group test beams were compared, it was observed that while vertical shear 6 

deflections increased, the total mid-point deflections decreased, leading to an increase in the 7 

percentage of shear deflection to mid-point deflection due to the application of preloading. 8 

Shear deflection percentages increased from 2.75, 4.57, 2.02 and 1.50% to 7.77, 8.48, 5.21 9 

and 2.30%, respectively, due to preloading for a/d ratios of 1, 2, 3 and 4. Preloading up to 10 

50% of maximum load-carrying capacity seemed to increase the possibility of brittle shear 11 

failure. In the third group, beams damaged at 28 days were left for self-healing for 30 days 12 

and tested at 58 days after casting. After the self-healing period, vertical deflections due to 13 

shear cracks were still higher than in the damaged beam results, regardless of a/d ratio. On the 14 

other hand, due to the self-healing maximum mid-point deflections were recovered to some 15 

degree for all a/d ratios. Shear deflection percentage to maximum deflection were 7.03, 7.48, 16 

4.70 and 1.44% for a/d ratios of 1, 2, 3 and 4, respectively. Those deflection percentages 17 

decreased in self-healed beams compared to damaged beam specimens. Even though shear 18 

deflections did not decrease, the shear deflection percentages recovered as the result of self-19 

healing. The preformed shear cracks reopened easily, most probably due to reloading. 20 

Moreover, in the case of a/d=4, shear deflection percentages of self-healed beam specimens 21 

improved over sound beam specimens, indicating that the percentage was smaller than in the 22 

undamaged ones. These findings show that self-healing is not as effective on shear cracks as it 23 

is on flexural cracks. Shear deflection results support the fact that self-healing was less 24 

effective for specimens showing shear behavior, as also concluded for strength, ductility ratio 25 

and energy absorption capacity.  26 

 27 

3.7 Visual inspection of cracks 28 

 29 

The success of the self-healing process was also evaluated by visual inspection. Cracks 30 

formed during pre-loading were observed during re-loading after 30 days of curing for self-31 

healing. To visually evaluate self-healing, pre-opened cracks were checked for evidence of 32 

self-healing before the application of preloading. Most of the time, self-healing could be 33 

observed as a white deposit on the crack surfaces which is also observed for small scale ECC 34 
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beams in the literature. This kind of white deposits are resulted by the reaction of Ca ions 1 

leaching from the hydration products and carbonates and/or carbonates produced as a result of 2 

the reaction of atmospheric CO2 and water. Also Ca(OH)2 may directly react with CO2 to 3 

form CaCO3 [7]. In general, tiny cracks – especially those close to the bottom of the beams – 4 

were almost healed in all specimens because bending cracks were narrower, making self-5 

healing easier. It should be also considered that unlike other self-healing studies conducted in 6 

the literature, the self-healing process in this study was fostered by burlap wetted at regular 7 

intervals to evaluate the feasibility of self-healing in real-life situations. Another reason may 8 

be that gravity forced water to the bottom of the beams, decreasing the availability of water on 9 

the sides and making it easier for bending cracks to heal in comparison with shear cracks.  10 

 11 

Propagation of cracks was observed during re-loading, which is another indicator of self-12 

healing quality. Most of the pre-opened cracks that had self-healed did not re-open, especially 13 

bending cracks. Rather, it was observed that new cracks had begun to form from a different 14 

location. Even when existing cracks re-opened, they propagated at a greater load level than 15 

that used when they were formed during pre-loading. This is also a good indicator of the self-16 

healing as it is known from the literature that formation of additional CSH gels as self-healing 17 

products in fly ash bearing ECC specimens due to the reaction of unhydrated fly ash particles 18 

with Ca(OH)2 and water, yields in recovery in the mechanical properties rather than transport 19 

properties. The repeatability and pervasiveness of self-healing in ECC has already been 20 

revealed for small scale specimens for both containing fly ash and ground granulated blast 21 

furnace slag [19].However, self-healing was not successful for shear cracks in comparison 22 

with bending cracks; only a small number of shear cracks close to the bottom face of the 23 

tested beams could be fully healed.   24 

 25 

4. Conclusions 26 

 27 

The study outlined in this paper investigated the effect of various shear span to effective depth 28 

ratios and the self-healing process on the performance of large-scale reinforced ECC beams. 29 

To interpret how important structural parameters changed with a/d ratios and especially with 30 

self-healing, general load-deflection behaviors, failure mechanisms, strengths, stiffnesses, 31 

ductility ratios, energy absorption capacities and shear displacements of three groups of 32 

specimens with four different shear span to effective depth ratios were compared. The 33 

conclusions are outlined below: 34 
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1) Large-scale reinforced ECC beams with four different a/d ratios were tested under 1 

four-point bending. Although no shear reinforcement was used in the production of 2 

the beam specimens, and moreover the a/d ratios of the specimens were in the 1 to 4 3 

range in which the risk of shear failure is more prominent, tensile reinforcements of all 4 

beam specimens reached their yield strength and specimens failed, exhibiting a ductile 5 

bending fracture, with the exception of those with an a/d ratio of 2. 6 

2) With the increased a/d ratio (which is one of the variables examined in the scope of 7 

the study), substantial decreases in strength, stiffness and energy absorption capacity 8 

were observed.  9 

3) The yield and maximum load-carrying capacities of specimens subjected to the self-10 

healing process exceeded those of the specimens damaged prior to loading up to 11 

failure at the age of 28 days, with a/d ratios of 1 to 3. For instance the increases in 12 

yield strength were calculated as 11, 18 and 46% while for the ultimate load carrying 13 

capacities they were 11, 2 and 17% for a/d ratios of 1 to 3, respectively. All beam 14 

specimens enhanced their load carrying capacities as a result of self-healing process 15 

when compared to pre damaged beams. However they could not reach the level of 16 

sound beams. On the other hand, test specimens with an a/d ratio of 4, those subjected 17 

to self-healing after initial pre-loading achieved  load-carrying capacities exceeding 18 

the values of control specimens by 6 and 7% for yield and ultimate load carrying 19 

capacities, respectively.. Energy absorption capacity and vertical shear deflection 20 

percentage to maximum mid-point deflection were especially improved. This finding 21 

shows that the self-healing process is much more successful on test specimens with an 22 

a/d ratio of 4, in which the bending mode is more dominant and shear failure is 23 

unlikely. This conclusion indicates that bending cracks that are shorter and have less 24 

surface friction heal better than longer shear cracks with more surface friction. 25 

4) Regardless of a/d ratio, preloading adversely affected all the properties of large-scale 26 

reinforced ECC beams. However, the properties were recovered as a result of self-27 

healing in 30 days. Load-carrying capacities, deflections, energy absorption capacities 28 

and yield stiffness values of the damaged beam specimens were especially improved 29 

after self-healing.  30 

 31 

The experimental work conducted in this study is intended to help us understand whether 32 

the intrinsic self-healing ability of ECC – which has been revealed in numerous studies for 33 

small-scale specimens – is valid for structural-size large-scale beams. The study shows 34 
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that besides offering enhanced mechanical performance, the intrinsic self-healing ability 1 

of ECC can be taken advantage of for large-scale beams.  2 
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Appendix 1 

 2 

The following symbols are used in this paper: 3 

a : Distance between applied shear force and support 4 

d : Effective depth (distance between upper concrete fiber and tensile reinforcement) 5 

 : Diameter of tensile reinforcement 6 

fsy : Yield strength of tensile reinforcement 7 

fsu : Ultimate strength of tensile reinforcement 8 

E : Elastic modulus of tensile reinforcement 9 

θ : Angle between the diagonal and horizontal axis in rectangular 10 

h : Height of the rectangular 11 

w : Width of the rectangular 12 

l1  : Length of first diagonal of rectangular 13 

l2  : Length of second diagonal of rectangular 14 

l’1 : Length of first diagonal of rectangular after deformation 15 

l’2 : Length of second diagonal of rectangular after deformation 16 

ε1  : Strain in the direction of first diagonal 17 

ε2 : Strain in the direction of second diagonal  18 

δ1 : Deflection in the direction of first diagonal  19 

δ2 : Deflection in the direction of second diagonal  20 

xa : x coordinate of point A 21 

ya : y coordinate of point A 22 

xb : x coordinate of point B 23 

yb : y coordinate of point B 24 

xc : x coordinate of point C 25 

yc :y coordinate of point C 26 

sh : Shear deflection 27 

 28 

29 



22 

Tables and Figures 1 

 2 

List of Tables 3 

Table 1. Properties of test specimens  4 

Table 2. Mixture proportions and basic mechanical properties 5 

Table 3. Overall results of the beam specimens after four-point bending tests 6 

Table 4. Shear deflections of specimens 7 

 8 

List of Figures 9 

Fig. 1 – Variation of failure modes, and shear and moment capacities of RC beams against a/d 10 

ratio [17] 11 

Fig. 2 – Reinforcement details of the specimens 12 

Fig. 3 – Specimens covered with wet burlap 13 

Fig.4 – Test setup and instrumentation 14 

Fig.5 – Vertical shear deflection calculation approach for diagonal shear crack 15 

Fig.6 – Sample displacement ramp adopted for loading 16 

Fig.7 – Load-deflection graphs of specimens 17 

Fig.8 – Crack patterns of beam specimens after test 18 

Fig.9 – Sample load-deflection graph of pre-loading of specimens at 28 days 19 

Fig.10 – Examples of load-strain graphs 20 

 21 

 22 

 23 

 24 

  25 



23 

Table 1. Values of main parameters of test specimens 1 

Spec. 

# 

Beam 

Name 

Beam 

Length (mm) 

a/d 

Ratio 
Remark 

1 

F
ir

st
 

G
ro

u
p

 AD1_V_28D 1130 1 

Reference specimens, Loaded up to 

failure after 28 days 

2 AD2_V_28D 1560 2 

3 AD3_V_28D 1990 3 

4 AD4_V_28D 2420 4 

5 

S
ec

o
n
d
 G

ro
u
p

 

AD1_PL_28D 

 
1130 1 First Step (Preload PL): Loaded 

upto 50% level of ultimate capacity 

after 28 days and unloaded. 

 

Second Step (Reload RL): After the 

first step, the same damaged 

specimen loaded up to failure. 

6 
AD2_PL_28D 

 
1560 2 

7 
AD3_PL_28D 

 
1990 3 

8 
AD4_PL_28D 

 
2420 4 

9 

T
h
ir

d
 G

ro
u
p

 

AD1_SH_58D 

 

 

1130 1 
First Step (Preload PL): Loaded up 

to 50% level of ultimate capacity 

after 28 days and unloaded. 

 

Second Step: Applied the self-

healing process up to 30 days. 

 

Third Step (Reload RL): After the 

self-healing process the same 

damaged specimen loaded up to 

failure. 

10 

AD2_SH_58D 

 

 

1560 2 

11 

AD3_SH_58D 

 

 

1990 3 

12 
AD4_SH_58D 

 
2420 4 

 2 

 3 

Table 2. Mixture proportions and basic mechanical properties 4 

Ingredients, (kg/m
3
)  

Portland cement  375 

Fly ash 823 

Water 318 

Silica sand 435 

PVA fiber  26.0 

HRWRA 3 

Mechanical Properties (28-day)  

Compressive strength (MPa) 46.1 

Flexural strength (MPa) 7.41 

Flexural deformation (mm) 4.52 

 5 
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Table 3.Overall results of beam specimens after four-point bending tests 1 

Spec 

# 

Concrete 

Type/Beam 

Name 

Load Capacity (kN) Deflection (mm) 

Ductility 

Ratio 

Yield 

Stiffness 

(kN/mm) 

Energy 

Absorption 

Capacity  

(kN-mm) 

Maximum 

Strain at 

Tension 

Reinf. () 

Failure Mode 

Yield Ultimate At Yield At Failure 

1 AD1_V_28D 403.60 501.47 3.71 16.01 4.32 108.79 6113 10021 Flexure 

2 AD2_V_28D 211.45 220.66 12.58 27.36 2.18 16.81 4269 2536 Flexure-Shear 

3 AD3_V_28D 120.96 143.27 11.79 32.75 2.78 10.26 3093 3983 Flexure 

4 AD4_V_28D 86.43 89.43 16.69 23.40 1.40 5.18 945 12311 Flexure 

5 AD1_PL_28D 371.14 406.91 3.50 11.45 3.27 106.04 3034 5988 Flexure 

6 AD2_PL_28D 168.96 213.96 5.41 16.27 3.01 31.23 2203 8559 Flexure 

7 AD3_PL_28D 102.18 131.98 7.77 25.34 3.26 13.15 2011 16082 Flexure 

8 AD4_PL_28D 80.32 84.31 14.03 18.23 1.30 5.72 547 7113 Flexure 

9 AD1_SH_58D 413.30 451.54 6.27 13.08 2.08 65.92 4310 16054 Flexure 

10 AD2_SH_58D 200.10 217.49 10.06 20.06 1.99 19.89 2885 9187 Flexure 

11 AD3_SH_58D 149.41 154.69 16.35 29.36 1.80 9.14 2851 13707 Flexure 

12 AD4_SH_58D 91.43 95.76 17.28 30.53 1.77 5.29 1841 14954 Flexure 
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Table 4.Shear deflections of specimens 1 

Spec. 

# 

Beam Name 

Mid-point 

Deflection Due to  

Shear Crack (mm) 

Maximum 

Mid-point Deflection 

(mm) 

Percentage* 

(%) 

1 AD1_V_28D 0.44 16.01 2.75 

2 AD2_V_28D 1.25 27.36 4.57 

3 AD3_V_28D 0.66 32.75 2.02 

4 AD4_V_28D 0.35 23.40 1.50 

5 AD1_PL_28D 0.89 11.45 7.77 

6 AD2_PL_28D 1.38 16.27 8.48 

7 AD3_PL_28D 1.32 25.34 5.21 

8 AD4_PL_28D 0.42 18.23 2.30 

9 AD1_SH_58D 0.92 13.08 7.03 

10 AD2_SH_58D 1.50 20.06 7.48 

11 AD3_SH_58D 1.38 29.36 4.70 

12 AD4_SH_58D 0.44 30.53 1.44 

* Ratio of shear deflection to total mid-point deflection in percentage 2 

  3 
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 1 

 2 
Fig. 1 Variation of failure modes, and shear and moment capacities of RC beams against 3 

a/d ratio [17] 4 
 5 

 6 
Fig. 2 Reinforcement details of the specimens 7 
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 1 

Fig. 3 Specimens covered with wet burlap  2 

 3 



28 

1 

 2 

 3 

Fig. 4 Test setup and instrumentation 4 
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 1 

Fig. 5 Vertical shear deflection calculation approach for diagonal shear crack 2 

 3 

 4 

 5 

 6 

 7 

Fig. 6 Sample displacement ramp adopted for loading 8 

w 

h 
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 1 

 2 

Fig. 7 Load-deflection curves of specimens 3 

First Group 

Second Group 
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 1 

Fig. 7 Load-deflection curves of specimens (continued) 2 

Third Group 
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a) AD1_V_28D b) AD2_V_28D c) AD3_V_28D d) AD4_V_28D 

 

   

e) AD1_PL_28D f) AD2_PL_28D g) AD3_PL_28D h) AD4_PL_28D 

    
i) AD1_SH_58D j) AD2_SH_58D k) AD3_SH_58D l) AD4_SH_58D 

Fig. 8 Crack patterns of beam specimens after testing 1 
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Fig. 9 Sample load-deflection graph of pre-loading of specimens at 28 days 

 

Fig. 10 Examples of load-strain graphs 
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