34 research outputs found

    Automated and model-free bridge damage indicators with simultaneous multi-parameter modal anomaly detection

    Get PDF
    This paper pursues a simultaneous modal parameter anomaly detection paradigm to structural damage identification inferred from vibration-based structural health monitoring (SHM) sensors, e.g., accelerometers. System Realization Using Information Matrix (SRIM) method is performed in short duration sweeping time windows for identification of state matrices, and then, modal parameters with enhanced automation. Stable modal poles collected from stability diagrams are clustered and fed into the Gaussian distribution-based anomaly detection platform. Different anomaly thresholds are examined both on frequency and damping ratio terms taking two testbed bridge structures as application means, and simplistic Boolean Operators are performed to merge univariate anomalies. The first bridge is a reinforced concrete bridge subjected to incremental damage through a series of seismic shake table experiments conducted at the University of Nevada, Reno. The second bridge is a steel arch structure at Columbia University Morningside Campus, which reflects no damage throughout the measurements, unlike the first one. Two large-scale implementations indicate the realistic performance of automated modal analysis and anomaly recognition with minimal human intervention in terms of parameter extraction and learning supervision. Anomaly detection performance, presented in this paper, shows variation according to the designated thresholds, and hence, the information retrieval metrics being considered. The methodology is well-fitted to SHM problems which require sole data-driven, scalable, and fully autonomous perspectives

    A Vision-Based Sensor for Noncontact Structural Displacement Measurement

    Get PDF
    Conventional displacement sensors have limitations in practical applications. This paper develops a vision sensor system for remote measurement of structural displacements. An advanced template matching algorithm, referred to as the upsampled cross correlation, is adopted and further developed into a software package for real-time displacement extraction from video images. By simply adjusting the upsampling factor, better subpixel resolution can be easily achieved to improve the measurement accuracy. The performance of the vision sensor is first evaluated through a laboratory shaking table test of a frame structure, in which the displacements at all the floors are measured by using one camera to track either high-contrast artificial targets or low-contrast natural targets on the structural surface such as bolts and nuts. Satisfactory agreements are observed between the displacements measured by the single camera and those measured by high-performance laser displacement sensors. Then field tests are carried out on a railway bridge and a pedestrian bridge, through which the accuracy of the vision sensor in both time and frequency domains is further confirmed in realistic field environments. Significant advantages of the noncontact vision sensor include its low cost, ease of operation, and flexibility to extract structural displacement at any point from a single measurement

    Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones

    Get PDF
    Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications

    Combination of GIS and SHM in prognosis and diagnosis of bridges in earthquake-prone locations

    Get PDF
    Bridge infrastructures are essential nodes in the transportation network. In earthquake-prone areas, seismic performance assessment of infrastructure is vital to identify, retrofit, reconstruct, or, if necessary, demolish the structural systems based on optimal decision-making processes. This research proposes the combined use of advanced tools used in the management and monitoring of bridges such as Geographical Information Systems (GIS) and Structural Health Monitoring (SHM) in a synergistic manner that can enable observation of bridges to construct an earthquake damage model. Post-earthquake disaster data can enhance and update this model to mitigate further damages both to the structure and transportation network in the future. Implications of new technologies such as drones and mobile devices in this scheme constitute the next step toward the future of the Cyber-Physical SHM systems. The proposed intelligent and sustainable cloud-based framework of SHM-GIS in this paper lays the core behind more robust impending systems. The synergistic behavior of the offered framework reduces the overall cost in large scale implementation and increases the accuracy of the results leading to a decision-making platform easing the management of bridges

    Examining the contribution of near real-time data for rapid seismic loss assessment of structures

    Get PDF
    This study proposes a probabilistic framework for near real-time seismic damage assessment that exploits heterogeneous sources of information about the seismic input and the structural response to the earthquake. A Bayesian Network is built to describe the relationship between the various random variables that play a role in the seismic damage assessment, ranging from those describing the seismic source (magnitude and location) to those describing the structural performance (drifts and accelerations) as well as relevant damage and loss measures. The a-priori estimate of the damage, based on information about the seismic source, is updated by performing Bayesian inference using the information from multiple data sources such as free-field seismic stations, Global Positioning System receivers, and structure-mounted accelerometers. A bridge model is considered to illustrate the application of the framework, and the uncertainty reduction stemming from sensor data is demonstrated by comparing prior and posterior statistical distributions. Two measures are used to quantify the added value of information from the observations, based on the concepts of pre-posterior variance and relative entropy reduction. The results shed light on the effectiveness of the various sources of information for the evaluation of the response, damage and losses of the considered bridge and on the benefit of data fusion from all considered sources

    A Bayesian network-based probabilistic framework for updating aftershock risk of bridges

    Get PDF
    The evaluation of a bridge's structural damage state following a seismic event and the decision on whether or not to open it to traffic under the threat of aftershocks (ASs) can significantly benefit from information about the mainshock (MS) earthquake's intensity at the site, the bridge's structural response, and the resulting damage experienced by critical structural components. This paper illustrates a Bayesian network (BN)-based probabilistic framework for updating the AS risk of bridges, allowing integration of such information to reduce the uncertainty in evaluating the risk of bridge failure. Specifically, a BN is developed for describing the probabilistic relationship among various random variables (e.g., earthquake-induced ground-motion intensity, bridge response parameters, seismic damage, etc.) involved in the seismic damage assessment. This configuration allows users to leverage data observations from seismic stations, structural health monitoring (SHM) sensors and visual inspections (VIs). The framework is applied to a hypothetical bridge in Central Italy exposed to earthquake sequences. The uncertainty reduction in the estimate of the AS damage risk is evaluated by utilising various sources of information. It is shown that the information from accelerometers and VIs can significantly impact bridge damage estimates, thus affecting decision-making under the threat of future ASs

    Vibration-based and near real-time seismic damage assessment adaptive to building knowledge level

    Get PDF
    This paper presents a multi-level methodology for near real-time seismic damage assessment of multi-story buildings, tailored to the available level of knowledge and information from sensors. The proposed methodology relates changes in the vibratory characteristics of a building—evaluated via alternative dynamic identification techniques—to the European Macroseismic Scale (EMS-98) damage grades. Three distinct levels of knowledge are considered for the building, with damage classification made through (i) empirical formulation based on quantitative ranges reported in the literature, (ii) analytical formulation exploiting the effective stiffness concept, and (iii) numerical modelling including a simplified equivalent single-degree-of-freedom model or a detailed finite element model of the building. The scope of the study is twofold: to construct a framework for integrating structural health monitoring into seismic damage assessment and to evaluate consistencies/discrepancies among different identification techniques and model-based and model-free approaches. The experimental data from a multi-story building subject to sequential shaking are used to demonstrate the proposed methodology and compare the effectiveness of the different approaches to damage assessment. The results show that accurate damage estimates can be achieved not only using model-driven approaches with enhanced information but also model-free alternatives with scarce information

    Structural Reliability Estimation with Participatory Sensing and Mobile Cyber-Physical Structural Health Monitoring Systems

    No full text
    With the help of community participants, smartphones can become useful wireless sensor network (WSN) components, form a self-governing structural health monitoring (SHM) system, and merge structural mechanics with participatory sensing and server computing. This paper presents a methodology and framework of such a cyber-physical system (CPS) that generates a bridge finite element model (FEM) integrated with vibration measurements from smartphone WSNs and centralized/distributed computational facilities, then assesses structural reliability based on updated FEMs. Structural vibration data obtained from smartphones are processed on a server to identify modal frequencies of an existing bridge. Without design drawings and supportive documentation but field measurements and observations, FEM of the bridge is drafted with uncertainties in the structural mass, stiffness, and boundary conditions (BCs). Then, 2700 FEMs are autonomously generated, and the baseline FEM is updated by minimizing the error between the crowdsourcing-based modal identification results and the FEM analysis. Furthermore, using 151 strong ground motion records from databases, the bridge response time history simulations are conducted to obtain displacement demand distribution. Finally, based on reference performance criteria, structural reliability of the bridge is estimated. Integrating the cyber (FEM analysis) and the physical (the bridge structure and measured vibration characteristics) worlds, this crowdsourcing-based CPS can provide a powerful tool for supporting rapid, remote, autonomous, and objective infrastructure-related decision-making. This study presents a new example of the emerging fourth industrial revolution from structural engineering and SHM perspective

    Synergistic bridge modal analysis using frequency domain decomposition, observer Kalman filter identification, stochastic subspace identification, system realization using information matrix, and autoregressive exogenous model

    Get PDF
    This paper presents multiple system identification of large-scale bridge structures proposing the combined usage of different modal parameter findings, namely from Frequency Domain Decomposition, Observer Kalman Filter Identification/Eigensystem Realization Algorithm, Combined Deterministic Stochastic Subspace Identification, System Realization Using Information Matrix, and Autoregressive Exogenous Model. A method-centric democratic ranking approach visualizes and quantifies the harmony among different system identification methods in terms of modal parameters, then ranks them based on the correlation among each other, and consequently complies with the highest rank modal parameter outputs. The synergistic scheme is applied on a numerical beam and two bridge structures including one healthy and another subjected to progressive damage. Looking at the top-rank selections, one can see that outlier identification results from a population of modal parameters can intuitively become extinct. The collaboration among methods is dependent on the chosen methods; therefore, method selection relies on care and fair representation of the identification features. Lack of agreement between methods can indicate low confidence in the outranking method and is quantified by median absolute deviation. Nevertheless, the majority of the algorithm population agrees on specific results, which are valuable to produce state knowledge despite low signal to noise ratio, especially without the presence of a reference. Thus, the collaborative usage of multiple methods in a systematic and ranking-based manner reduces significant error and outlier possibilities in modal identification due to algorithm-related issues, which is the novel contribution of this study
    corecore